$\overset{\circ}{\underset{\circ}{\overset{\circ}{}}}$	Saving Energy 00 00000 0 0 0 0	Energy Savings and Real-Time Systems	Energy and Fault 0 0

Real-Time Systems & Fault Tolerance

Flávia Maristela

Instituto Federal da Bahia Especialização em Computação Distribuída e Ubíqua (ECDU)

Salvador, Outubro de 2013

$\overset{0}{\underset{0}{\overset{0}{}}}$	Saving Energy 00 00000 0 0 0 0	Energy Savings and Real-Time Systems	Energy and Fault 0 0

Schedule

- **2** Saving Energy
- **3** Energy Savings and Real-Time Systems

4 Energy and Fault

Motivation	Saving Energy	Energy Savings and Real-Time Systems	Energy and Fault
• •			
Computers in	0 0 n the past		

2 Saving Energy

3 Energy Savings and Real-Time Systems

Real-Time Systems & Fault Tolerance

Flávia Maristela

Motivation ● ○	Saving Energy 00 0000 0000 0 0	Energy Savings and Real-Time Systems	Energy and Fault 0 0
Computers ir	1 the past		

- In the past 50 years designers believed that computers had to be "fast, small and cheap"
- Microprocessor design used to focus on:
 - **()** improving throughput
 - **2** decreasing chips area
- Recently, "lower power" was added ⇒ significantly complicated the whole picture
 - ① portable personal computing
 - **2** communication devices
 - **3** reliability issues
 - **4** ubiquitous and pervasive applications

Motivation ○ ●	Saving Energy 00 00000 0 0 0 0 0	Energy Savings and Real-Time Systems	Energy and Fault 0 0
Mobile Devic	es and Energy		

- The advent of mobile computing motivated the focus to be changed to providing more power conscious solutions.
- Today, many real-time systems are battery-operated embedded devices ⇒ restricted energy budgets.

$\overset{O}{\underset{O}{\rightarrow}}$	Saving Energy ●0 0000 0 0 0 0 0 0 0 0 0 0 0	Energy Savings and Real-Time Systems	Energy and Fault $\stackrel{\circ}{\circ}$
-			
Power Manag	gement: Why and	What?	

2 Saving Energy

3 Energy Savings and Real-Time Systems

Real-Time Systems & Fault Tolerance

Flávia Maristela

Motivation	Saving Energy	Energy Savings and Real-Time Systems	Energy and Fault
	•0		
Power Manag	rement. Why and	What?	

- Battery operated: most mobile systems as Laptops, PDAs and Cell phones
- Heating: for complex Servers as the ones based on multiprocessors
- Power Aware: maintain QoS, reduce energy

$\overset{O}{\overset{O}{}}$	vation	Saving Energy ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	Energy Savings and Real-Time Systems	Energy and Fault 0 0
_				

Power Management: Why and What?

The peak computing rate needed is much higher than the average throughput that must be sustained

High performance is needed only for a small fraction of time, while for the rest of time, a low-power processor would suffice.

$\overset{O}{\underset{O}{\rightarrow}}$	Saving Energy 00 0000 0000 0 0 0 0 0 0 0	Energy Savings and Real-Time Systems	Energy and Fault 0 0
Power Manag	gement: How?		

- Power off un-used parts: LCD, disk for Laptop
- Gracefully reduce the performance
 - CPU: dynamic power $P_d = C_{ef} V_{dd}^2 f$ [Chandrakasan-1992, Burd-1995]
 - C_{ef} : switch capacitance
 - V_{dd} : supply voltage
 - f: processor frequency \Rightarrow linear to V_{dd}

$\overset{O}{\underset{O}{}}$	Saving Energy 00 0 0 0 0 0 0 0 0 0 0 0 0	Energy Savings and Real-Time Systems	Energy and Fault $\stackrel{\circ}{\circ}$
Energy Mode	el		

• Common Processors: static power + dynamic power

$\overset{O}{\underset{O}{}}$	Saving Energy ○○ ○ ○ ○ ○ ○	Energy Savings and Real-Time Systems	Energy and Fault $\stackrel{\circ}{\circ}$
Energy Mode	l		

• Common Processors: static power + dynamic power

$\overset{O}{\underset{O}{\rightarrow}}$	Saving Energy ○○ ○ ○ ○ ○ ○ ○	Energy Savings and Real-Time Systems	Energy and Fault 0 0
Energy Mode	el		

• Power consumed by microprocessors can be stated as follows:

$$P \propto C_{ef} V^2 f, \tag{1}$$

where \mathbf{C}_{ef} is the switch capacitance; **V** is the supply voltage; and f is the maximum frequency.

$\overset{O}{\underset{O}{\rightarrow}}$	Saving Energy $\circ \circ$ $\circ \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ \circ$ $\circ \circ $	Energy Savings and Real-Time Systems	Energy and Fault $\stackrel{\circ}{\circ}$
Energy Mode	el.		

- Most used techniques for providing power reduction:
 - Dynamic Frequency Scaling (DFS)
 - Dynamic Voltage Scaling (DVS)
 - Dynamic Power Management (DPM)

$\overset{O}{\underset{O}{\rightarrow}}$	Saving Energy ○○ ○ ○○○● ○ ○	Energy Savings and Real-Time Systems	Energy and Fault $\stackrel{\circ}{\circ}$
Energy Mode	1		

- Most used techniques for providing power reduction:
 - Dynamic Frequency Scaling (DFS)
 - Dynamic Voltage Scaling (DVS)
 - Dynamic Power Management (DPM)
 - Dynamic Power and Frequency Scaling (DVFS)

$\underset{\circ}{\mathbf{Motivation}}$	Saving Energy	Energy Savings and Real-Time Systems	Energy and Fault \circ
	0000		
	0		
Frequency Sc	aling		

Frequency Scaling

saves energy by reducing frequency without changing supply voltage

• At maximum frequency f_{max} , energy consumption is:

$$E = C_{ef} V_{max}^2 f_{max} \tag{2}$$

- We assume $f_{max} = 1$
- At frequency $f < f_{max}$, the power dissipation is

$$P = C_{ef} V_{max}^2 f \tag{3}$$

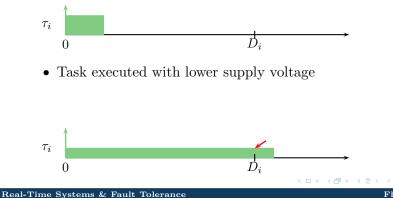
Motivation 0 0	Saving Energy ○○ ○○○○○ ○ ○ ○ ○ ○ ○	Energy Savings and Real-Time Systems	Energy and Fault 0 0
Voltage Scali	ng		

Voltage Scaling

reduces the supply voltage for lower frequencies to save energy

- Standard technique for managing the power consumption.
- Several energy saving approaches are based on Dynamic Voltage Scaling DVS
- DVS can reduce power consumption at least quadratically at the expense of linearly increasing delay (reducing speed).

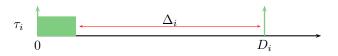
Motivation	Saving Energy	Energy Savings and Real-Time Systems	Energy and Fault
	00		
	•		
Voltage and	Engling		

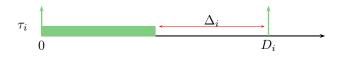

Considers that frequency and voltage almost always varies proportionally

- Assume that the supply voltage $V_{max} = 1$.
- Thus, for frequency f, the supply voltage is given by $V = V_{max} \cdot f$
- At voltage $V < V_{max}$, the power dissipation is

$$P = C_{ef} V^2 f \tag{4}$$

$\overset{0}{\underset{0}{\rightarrow}}$	Saving Energy 00 0 00000 0 0 0	Energy Savings and Real-Time Systems	Energy and Fault $\stackrel{\circ}{\circ}$


• For real-time systems, scaling down processing frequency (speed) may cause a deadline miss


Flávia Maristela

	$\operatorname{Motivation}_{\substack{0\\0}}$	Saving Energy 00 00000 0 0 0 0 0	Energy Savings and Real-Time Systems	Energy and Fault 0 0
--	---	---	--------------------------------------	----------------------------

• The idea is to use slack Δ to save energy

• Task executed with lower voltage supply

$\overset{O}{\underset{O}{\rightarrow}}$	Saving Energy 00 00000 0 0 0 0 0	Energy Savings and Real-Time Systems	Energy and Fault 0 0

- Basically, there are two kinds of slack: *static* and *dynamic*
 - Static: the difference between deadline and execution cost of tasks
 - Dynamic: results at runtime when a task consumes less than its worst-case execution time
 - Recent studies¹ show that DVFS has a direct impact on transient fault rates.

¹The effects of Energy Management on Reliability in Real-Time Embedded Systems $\langle \Box \rangle \langle \overline{\sigma} \rangle \langle \overline{c} \rangle \langle \overline{c} \rangle$

Real-Time Systems & Fault Tolerance

$\overset{O}{\underset{O}{\rightarrow}}$	Saving Energy 00 00000 0 0 0 0	Energy Savings and Real-Time Systems	Energy and Fault 0 0

- The idea to deal with transient faults and power consumption is very simple:
 - Exploit the available slack to schedule a recovery task
 - Use the "remaining" slack for power management
- This approach has been called *Reliability Aware Power Management* and has been extensively used explored for uniprocessor systems.

$\overset{O}{\overset{O}{}}$	Saving Energy 00 00000 0 0 0 0	Energy Savings and Real-Time Systems	Energy and Fault ° °

- Energy consumption and fault occurrence are co-related:
 - As the energy consumption increases so does the temperature and hence the frequency (likelihood) of fault occurrence.
 - An increment in fault occurrence causes re-execution of the task (or the execution of an alternative version) leading to higher energy consumption.
 - Also, in order to achieve energy minimization, less redundancy (time or space) should be deployed (as it add to the overheads).
 - However, most of the time, the higher the redundancy the better is the fault tolerance of the system.
- Thus, there is a trade-off which should be accurately tuned to provide better performance both in terms of energy and fault.

$\overset{O}{\overset{O}{}}$	Saving Energy 00 00000 0 0 0 0 0	Energy Savings and Real-Time Systems	Energy and Fault ● ○
Frequency So	aling and Fault Oc	currence	

- When supply voltage is fixed, the fault rate in circuits decrease linearly when frequency reduces 2
- For frequency scaling with fixed supply voltage the average fault rate can be modeled as:

$$\lambda(f,V) = \lambda(f) = \lambda_0 f^b \tag{5}$$

where λ_0 is the average fault rate and b(>0) is a constant. For b = 1 the fault rate is linearly increasing with the frequency

Real-Time Systems & Fault Tolerance

Motivation 0 0	Saving Energy 00 00000 0 0 0 0 0	Energy Savings and Real-Time Systems	Energy and Fault ○ ●
Voltage Scali	ng and Fault Occu	rrence	

- For technologies which have different supply voltages, the fault rate increases exponentially when supply voltage decreases 3
- For frequency f and voltage $V = fV_{max} = f$, the average fault rate is:

$$\lambda(f,V) = \lambda(f) = \lambda_0 10^{\frac{d(1-f)}{1-f_{min}}} \tag{6}$$

³Trends in electronic reliability: effects of terrestrial cosmic rays \mathbb{E} \mathbb{E}

Real-Time Systems & Fault Tolerance