Fault Tolerance and Real-Time Systems ^O ^O	Fault Tolerant Real-Time Scheduling 0 0 0 0 0 0 0 0 0 0 0 0 0

Real-Time Systems & Fault Tolerance

Flávia Maristela

Instituto Federal da Bahia Especialização em Computação Distribuída e Ubíqua (ECDU)

Salvador, Outubro de 2013

Fault Tolerance and Real-Time Systems ⁰ ⁰ ⁰	Fault Tolerant Real-Time Scheduling 0 0 0 0 0 0 0 0 000

Schedule

2 Fault Tolerant Real-Time Scheduling

Real-Time Systems & Fault Tolerance

Fault Tolerance and Real-Time Systems	Fault Tolerant Real-Time Scheduling
	00

1 Fault Tolerance and Real-Time Systems

2 Fault Tolerant Real-Time Scheduling

Real-Time Systems & Fault Tolerance

Fault Tolerance and Real-Time Systems ° °	Fault Tolerant Real-Time Scheduling

In the context of a real-time system, what happens if a task fails?

- Any computational system can POTENTIALLY fail.
 - What happens if a given task $\tau_i \in \Gamma$ fail?
 - How faults can prevent tasks to meet their *deadlines*?
 - What can be done so that the system can survive, even in the presence of faults?

Fault Tolerance and Real-Time Systems ● ○ ○	Fault Tolerant Real-Time Scheduling 0 0 0 0 0 0 000
Faults and criticality in Real-Time Systems	

• How faults affect different real-time systems?

Fault Tolerance and Real-Time Systems ● ○ ○	Fault Tolerant Real-Time Scheduling 0 0 0 0 0 0 0 000
Faults and criticality in Real-Time Systems	

- How faults affect different real-time systems?
- Hard Real-Time Systems: a deadline miss may have "catastrophic" consequences

Fault Tolerance and Real-Time Systems ● ○ ○	Fault Tolerant Real-Time Scheduling 0 0 0 0 0 0 0 000
Faults and criticality in Real-Time Systems	

- How faults affect different real-time systems?
- Hard Real-Time Systems: a deadline miss may have "catastrophic" consequences
- **Soft** Real-Time Systems: most of the time, a deadline miss causes performance degradation.

Fault Tolerance and Real-Time Systems	Fault Tolerant Real-Time Scheduling
	00
Faults and Roal-time systems characteristics	

Fault Tolerance and Real-Time Systems ○ ● ○	Fault Tolerant Real-Time Scheduling
Faults and Real-time systems characteristics	

• Timeliness: results have <u>also</u> to be correct in time domain (besides logical domain)

Fault Tolerance and Real-Time Systems ⊙ ⊙	Fault Tolerant Real-Time Scheduling 0 0 0 0 0 0 0 0 0 0 0 0 0
Faults and Real-time systems characteristics	

- Timeliness: results have <u>also</u> to be correct in time domain (besides logical domain)
- Efficiency: related to the efficiency in managing available resources, specially in embedded devices (space, weight, energy, memory and computational power)

Fault Tolerance and Real-Time Systems ⊙ ⊙	Fault Tolerant Real-Time Scheduling 0 0 0 0 0 0 0 0 0 0 0 0 0
Faults and Real-time systems characteristics	

- Timeliness: results have <u>also</u> to be correct in time domain (besides logical domain)
- Efficiency: related to the efficiency in managing available resources, specially in embedded devices (space, weight, energy, memory and computational power)
- Robustness: systems must be able to support eventual overloads

Fault Tolerance and Real-Time Systems ○ ●	Fault Tolerant Real-Time Scheduling 0 0 0 0 0 0 0 0 0 0 0 0 0
Faults and Predictability	

Predictability Definition

How faults can affect real-time systems predictability?

Definition

"(...) the system should be able to predict the evolution of tasks and guarantee $\underline{in advance}$ that all critical timing constraints will be met."

We focus on scheduling aspects to improve fault tolerance
 ⇒ scheduling decisions

Fault Tolerance and Real-Time Systems	Fault Tolerant Real-Time Scheduling

1 Fault Tolerance and Real-Time Systems

2 Fault Tolerant Real-Time Scheduling

Real-Time Systems & Fault Tolerance

Fault Tolerance and Real-Time Systems ⁰ ₀ ₀ ₀	Fault Tolerant Real-Time Scheduling
Faults and Tasks Behavior	

Tasks Activation

- **Periodic**: activation occurs in an infinite sequence, with a single activation per period (time-triggered on a regular basis)
- **Aperiodic**: activation cannot be predicted (random activation time instants)
- **Sporadic**: aperiodic tasks whose minimum interval between two consecutive activations is known

- Fault-Tolerant real-time systems include a recovery action, which is modeled as a special task
- Consider a real-time system composed of a set of n tasks $\Gamma = \{\tau_1, \ldots, \tau_n\}$. For such a system, a given task τ_i has a specific attribute, related to fault occurrence:
 - Arrival Time (Release Time) (R_i)
 - Period (T_i)
 - Absolute Deadline (d_i)
 - Relative Deadline (D_i)
 - Execution $Cost(C_i)$
 - Recovery Execution $\operatorname{Cost}(\bar{C}_i)$

Fault Tolerance and Real-Time Systems O O O	Fault Tolerant Real-Time Scheduling ○ ● ○ ○ ○ ○ ○ ○
Task Attributes for Fault Tolerance	

• A fault tolerant real-time system must have an appropriate scheduling policy and a suitable recovery scheme, which aims at putting the system in a safe state.

- There are **several** fault-tolerant scheduling approaches for real-time systems
- Indeed, they are strictly related to the assumed fault model
- Some literature fault models:
 - Faults are random events (aperiodic tasks) ⇒ Probabilistic and Inference Methods / Stochastic Models (Ex.: Markov Chains)
 - Faults are modeled as sporadic events (sporadic tasks) \Rightarrow Fault Tolerant scheduling ans analysis
 - Faults are modeled as periodic events (periodic tasks) \Rightarrow Worst-Case assumptions

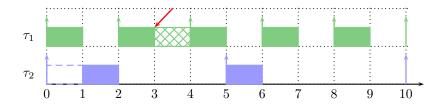
Fault Tolerance and Real-Time Systems	Fault Tolerant Real-Time Scheduling
	000
Aperiodic Events	

• Faults are random events (aperiodic tasks) ⇒ Probabilistic and Inference Methods / Stochastic Models (Ex.: Markov Chains)

Fault Tolerance and Real-Time Systems	Fault Tolerant Real-Time Scheduling
Sporadic Events	

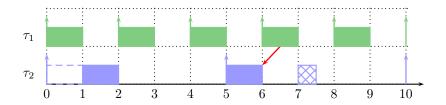
• Faults are modeled as sporadic events (sporadic tasks) \Rightarrow Fault Tolerant scheduling ans analysis

Fault Tolerance and Real-Time Systems	Fault Tolerant Real-Time Scheduling
	•
	000
Periodic Events	


• Faults are modeled as periodic events (periodic tasks) \Rightarrow Worst-Case assumptions

Fault Tolerance and Real-Time Systems 0 0 0	Fault Tolerant Real-Time Scheduling
	o ●00
Recovery Models	

- Fault-Tolerance is achieved recovery actions upon errors detection;
- Usually, recovery scheme is based on temporal redundancy, since transient faults are mentioned as the most frequent ones


Fault Tolerance and Real-Time Systems	Fault Tolerant Real-Time Scheduling
	00
	000
Recovery Models	

Recovery based on the reexecution of the faulty task

Fault Tolerance and Real-Time Systems	Fault Tolerant Real-Time Scheduling
	00
	000
Recovery Models	

Recovery based on executing an alternative task version

