
Behavioral Subtyping Using Invariants and Constraints

Barbara H. Liskova Jeannette M. Wing

July 1999

CMU-CS-99-156

aMIT Lab. for Computer Science, 545 Technology Square, Cambridge, MA 02139

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

The work described in this paper is based on a November 1994 ACM TOPLAS paper, \A Behavioral

Notion of Subtyping, by the same authors. This paper's version has been submitted to the volume

Formal Methods For Distributed Processing: An Object-Oriented Approach, edited by Howard Bowman

and John Derrick.

Abstract

We present a way of de�ning the subtype relation that ensures that subtype objects preserve behavioral

properties of their supertypes. The subtype relation is based on the speci�cations of the sub- and supertypes.

Our approach handles mutable types and allows subtypes to have more methods than their supertypes.

Dealing with mutable types and subtypes that extend their supertypes has surprising consequences on how

to specify and reason about objects. In our approach, we discard the standard data type induction rule,

we prohibit the use of an analogous \history" rule, and we make up for both losses by adding explicit

predicates|invariants and constraints{to our type speci�cations. We also discuss the rami�cations of our

approach of subtyping the design of type families.

This research was supported for Liskov in part by the Advanced Research Projects Agency of the Department

of Defense, monitored by the O�ce of Naval Research under contract N00014-91-J-4136 and in part by the National

Science Foundation under Grant CCR-8822158; for Wing, by the Avionics Lab, Wright Research and Development
Center, Aeronautical Systems Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under

Contract F33615-90-C-1465, ARPA Order No. 7597.

Keywords: subtype, object-oriented design, abstraction function, mutable types, invariants, constraints,

speci�cations

1 Introduction

What does it mean for one type to be a subtype of another? We argue that this is a semantic question

having to do with the behavior of the objects of the two types: the objects of the subtype ought to behave

the same as those of the supertype as far as anyone or any program using supertype objects can tell.

For example, in strongly typed object-oriented languages such as Simula 67[DMN70], C++[Str86],

Modula-3[Nel91], and Trellis/Owl[SCB+86], subtypes are used to broaden the assignment statement. An

assignment

x: T := E

is legal provided the type of expression E is a subtype of the declared type T of variable x. Once the

assignment has occurred, x will be used according to its \apparent" type T, with the expectation that if the

program performs correctly when the actual type of x's object is T, it will also work correctly if the actual

type of the object denoted by x is a subtype of T.

Clearly subtypes must provide the expected methods with compatible signatures. This consideration has

led to the formulation of the contra/covariance rules[BHJ+87, SCB+86, Car88]. However, these rules are

not strong enough to ensure that the program containing the above assignment will work correctly for any

subtype of T, since all they do is ensure that no type errors will occur. It is well known that type checking,

while very useful, captures only a small part of what it means for a program to be correct; the same is

true for the contra/covariance rules. For example, stacks and queues might both have a put method to add

an element and a get method to remove one. According to the contravariance rule, either could be a legal

subtype of the other. However, a program written in the expectation that x is a stack is unlikely to work

correctly if x actually denotes a queue, and vice versa.

What is needed is a stronger requirement that constrains the behavior of subtypes: properties that can

be proved using the speci�cation of an object's presumed type should hold even though the object is actually

a member of a subtype of that type:

Subtype Requirement: Let �(x) be a property provable about objects x of type T. Then �(y)

should be true for objects y of type S where S is a subtype of T.

A type's speci�cation determines what properties we can prove about objects.

We are interested only in safety properties (\nothing bad happens"). First, properties of an object's

behavior in a particular programmust be preserved: to ensure that a program continues to work as expected,

calls of methods made in the program that assume the object belongs to a supertype must have the same

behavior when the object actually belongs to a subtype. In addition, however, properties independent

of particular programs must be preserved because these are important when independent programs share

objects. We focus on two kinds of such properties: invariants, which are properties true of all states, and

history properties, which are properties true of all sequences of states. We formulate invariants as predicates

over single states and history properties, over pairs of states. For example, an invariant property of a bag is

that its size is always less than its bound; a history property is that the bag's bound does not change. We

do not address other kinds of safety properties of computations, e.g., the existence of an object in a state,

the number of objects in a state, or the relationship between objects in a state, since these do not have

to do with the meanings of types. We also do not address liveness properties (\something good eventually

happens"), e.g., the size of a bag will eventually reach the bound.

This chapter provides a general, yet easy to use, de�nition of the subtype relation that satis�es the

Subtype Requirement. Our approach handles mutable types and allows subtypes to have more methods

than their supertypes. Dealing with mutable types and subtypes that extend their supertypes has surprising

consequences on how to specify and reason about objects. In our approach, we discard the standard data

type induction rule, we prohibit the use of an analogous \history" rule, and we make up for both losses by

adding explicit predicates to our type speci�cations. Our speci�cations are formal, which means that they

have a precise mathematical meaning that serves as a �rm foundation for reasoning. Our speci�cations can

also be used informally as described in [LG85].

Our de�nition applies in a very general distributed environment in which possibly concurrent users share

mutable objects. Our approach is also constructive: One can prove whether a subtype relation holds by

proving a small number of simple lemmas based on the speci�cations of the two types.

1

The chapter also explores the rami�cations of the subtype relation and shows how interesting type families

can be de�ned. For example, arrays are not a subtype of sequences (because the user of a sequence expects

it not to change over time) and 32-bit integers are not a subtype of 64-bit integers (because a user of 64-bit

integers would expect certain method calls to succeed that will fail when applied to 32-bit integers). However,

type families can be de�ned that group such related types together and thus allow generic routines to be

written that work for all family members. Our approach makes it particularly easy to de�ne type families:

it emphasizes the properties that all family members must preserve, and it does not require the introduction

of unnecessary methods (i.e., methods that the supertype would not naturally have).

The chapter is organized as follows. Section 2 discusses in more detail what we require of our subtype

relation and provides the motivation for our approach. We describe our model of computation in Section 3

and present our speci�cation method in Section 4. We give a formal de�nition of subtyping in Section 5; we

discuss its rami�cations on designing type hierarchies in Section 6. We describe related work in Section 7

and summarize our contributions in Section 8.

2 Motivation

To motivate the basic idea behind our notion of subtyping, let's look at an example. Consider a bounded

bag type that provides a put method that inserts elements into a bag and a get method that removes an

arbitrary element from a bag. Put has a pre-condition that checks to see that adding an element will not

grow the bag beyond its bound; get has a pre-condition that checks to see that the bag is non-empty.

Consider also a bounded stack type that has, in addition to push and pop methods, a swap top method

that takes an integer, i, and modi�es the stack by replacing its top with i. Stack's push and pop methods

have pre-conditions similar to bag's put and get, and swap top has a pre-condition requiring that the stack

is non-empty.

Intuitively, stack is a subtype of bag because both kinds of collections behave similarly. The main

di�erence is that the get method for bags does not specify precisely what element is removed; the pop

method for stack is more constrained, but what it does is one of the permitted behaviors for bag's get

method. Let's ignore swap top for the moment.

Suppose we want to show stack is a subtype of bag. We need to relate the values of stacks to those of

bags. This can be done by means of an abstraction function, like that used for proving the correctness of

implementations [Hoa72]. A given stack value maps to a bag value where we abstract from the insertion

order on the elements.

We also need to relate stack's methods to bag's. Clearly there is a correspondence between stack's push

method and bag's put and similarly for the pop and get methods (even though the names of the corresponding

methods do not match). The pre- and post-conditions of corresponding methods will need to relate in some

precise (to be de�ned) way. In showing this relationship we need to appeal to the abstraction function so

that we can reason about stack values in terms of their corresponding bag values.

Finally, what about swap top? Most other de�nitions of the subtype relation have ignored such \extra"

methods, and it is perfectly adequate do so when programs are considered in isolation and there is no aliasing.

In such a constrained situation, a program that uses an object that is apparently a bag but is actually a stack

will never call the extra methods, and therefore their behavior is irrelevant. However, we cannot ignore extra

methods in the presence of aliasing, and also in a general computational environment that allows sharing

of mutable objects by multiple users or processes. In particular, we need to pay attention to extra mutator

methods (like swap top) that modify their object.

Consider �rst the case of aliasing. The problem here is that within a program an object is accessible by

more than one name, so that modi�cations using one of the names are visible when the object is accessed

using the other name. For example, suppose � is a subtype of � and that variables

x: �

y: �

both denote the same object (which must, of course, belong to � or one of its subtypes). When the object

is accessed through x, only � methods can be called. However, when it is used through y, � methods can be

called and if these methods are mutators, their e�ects will be visible later when the object is accessed via

2

x. To reason about the use of variable x using the speci�cation of its type � , we need to impose additional

constraints on the subtype relation.

Now consider the case of an environment of shared mutable objects, such as is provided by object-oriented

databases (e.g., Thor [Lis92] and Gemstone [MS90]). In such systems, there is a universe containing shared,

mutable objects and a way of naming those objects. In general, lifetimes of objects may be longer than

the programs that create and access them (i.e., objects might be persistent) and users (or programs) may

access objects concurrently and/or aperiodically for varying lengths of time. Of course there is a need for

some form of concurrency control in such an environment. We assume such a mechanism is in place, and

consider a computation to be made up out of atomic units (i.e., transactions) that exclude one another. The

transactions of di�erent computations can be interleaved and thus one computation is able to observe the

modi�cations made by another.

If there were subtyping in such an environment the following situation might occur. A user installs a

directory object that maps string names to bags. Later, a second user enters a stack into the directory under

some string name; such a binding is analogous to assigning a subtype object to a variable of the supertype.

After this, both users occasionally access the stack object. The second user knows it is a stack and accesses

it using stack methods. The question is: What does the �rst user need to know in order for his or her

programs to make sense?

We think it ought to be su�cient for a user to know only about the \apparent" type of the object; the

subtype ought to preserve any properties that can be proved about the supertype. In particular, the �rst

user ought to be able to reason about his or her use of the stack object using invariant and history properties

of bag.

Our approach achieves this goal by adding information to type speci�cations. To handle invariants, we

add an invariant clause; to handle history properties, a constraint clause. Showing that � is a subtype of �

requires showing that (under the abstraction function) �'s invariant implies � 's invariant and �'s constraint

implies � 's constraint.

For example, for the bag and stack example, the two invariants are identical: both state that the size of

the bag (stack) is less than or equal to its bound. Similarly, the two constraints are identical: both state that

the bound of the bag (or stack) does not change. Showing that stack's invariant and constraint respectively

imply bag's invariant and constraint is trivial. The extra method swap top is permitted because even though

it changes the stack's contents, it preserves stack's invariant and constraint.

In Section 5 we present and discuss our subtype de�nition. First, however, we de�ne our model of

computation, and then discuss speci�cations, since these de�ne the objects, values, and methods that will

be related by the subtype relation.

3 Model of Computation

We assume a set of all potentially existing objects, Obj, partitioned into disjoint typed sets. Each object

has a unique identity. A type de�nes a set of values for an object and a set of methods that provide the only

means to manipulate that object. E�ectively Obj is a set of unique identi�ers for all objects that can contain

values.

Objects can be created and manipulated in the course of program execution. A state de�nes a value for

each existing object. It is a pair of mappings, an environment and a store. An environment maps program

variables to objects; a store maps objects to values.

State = Env � Store

Env = Var ! Obj

Store = Obj ! Val

Given a variable, x, and a state, �, with an environment, �:e, and store, �:s, we use the notation x� to denote

the value of x in state �; i.e., x� = �:s(�:e(x)). When we refer to the domain of a state, dom(�), we mean

more precisely the domain of the store in that state.

We model a type as a triple, hO; V;M i, where O � Obj is a set of objects, V � Val is a set of values,

and M is a set of methods. Each method for an object is a producer, an observer, or a mutator. Producers

of an object of type � return new objects of type � ; observers return results of other types; mutators modify

3

objects of type � . An object is immutable if its value cannot change and otherwise it is mutable; a type is

immutable if its objects are and otherwise it is mutable. Clearly a type can be mutable only if some of its

methods are mutators. We allow mixed methods where a producer or an observer can also be a mutator.

We also allow methods to signal exceptions; we assume termination exceptions, i.e., each method call either

terminates normally or in one of a number of named exception conditions. To be consistent with object-

oriented language notation, we write x.m(a) to denote the call of method m on object x with the sequence

of arguments a.

Objects come into existence and get their initial values through creators. (These are often called con-

structors in the literature.) Unlike other kinds of methods, creators do not belong to particular objects, but

rather are independent operations.

A computation, i.e., program execution, is a sequence of alternating states and transitions starting in

some initial state, �0:

�0 Tr1 �1 ::: �n�1 Trn �n

Each transition, Tri, of a computation sequence is a partial function on states; we assume the execution of

each transition is atomic. A history is the subsequence of states of a computation; we use � and to range

over states in any computation, c, where � precedes in c. The value of an object can change only through

the invocation of a mutator; in addition the environment can change through assignment and the domain of

the store can change through the invocation of a creator or producer.

Objects are never destroyed:

8 1 � i � n : dom(�i�1) � dom(�i).

4 Speci�cations

4.1 Type Speci�cations

A type speci�cation includes the following information:

� The type's name;

� A description of the type's value space;

� A de�nition of the type's invariant and history properties;

� For each of the type's methods:

{ Its name;

{ Its signature (including signaled exceptions);

{ Its behavior in terms of pre-conditions and post-conditions.

Note that the creators are missing. Omitting creators allows subtypes to provide di�erent creators than

their supertypes. In addition, omitting creators makes it easy for a type to have multiple implementations,

allows new creators to be added later, and reects common usage: for example, Java interfaces and virtual

types provide no way for users to create objects of the type. We show how to specify creators in Section 4.2.

In our work we use formal speci�cations in the two-tiered style of Larch [GHW85]. The �rst tier de�nes

sorts, which are used to de�ne the value spaces of objects. In the second tier, Larch interfaces are used to

de�ne types.

For example, Figure 1 gives a speci�cation for a bag type whose objects have methods put, get, card,

and equal. The uses clause de�nes the value space for the type by identifying a sort. The clause in the

�gure indicates that values of objects of type bag are denotable by terms of sort B introduced in the BBag

speci�cation; a value of this sort is a pair, helems; boundi, where elems is a mathematical multiset of integers

and bound is a natural number. The notation f g stands for the empty multiset, [is a commutative

operation on multisets that does not discard duplicates, 2 is the membership operation, and j x j is a

4

which says only objects listed may change in value. A modi�es clause is a strong statement about all

objects not explicitly listed, i.e., their values may not change; if there is no modi�es clause then nothing

may change. For example, card's post-condition says that it returns the size of the bag and no objects

(including the bag) change, and put's post-condition says that the bag's value changes by the addition of its

integer argument, and no other objects change.

Methods may terminate normally or exceptionally; the exceptions are listed in a signals clause in the

method's header. For example, instead of the get method we might have had

get 0 = proc () returns (int) signals (empty)

modi�es b

ensures if bpre:elems = f g then signal empty

else bpost:elems = bpre:elems � fresultg ^

result 2 bpre:elems ^ bpost:bound = bpre:bound

4.2 Specifying Creators

Objects are created and initialized through creators. Figure 2 shows speci�cations for three di�erent creators

for bags. The �rst creator creates a new empty bag whose bound is its integer argument. The second and

third creators �x the bag's bound to be 100. The third creator uses its integer argument to create a singleton

bag. The assertion new(x) stands for the predicate:

x 2 dom(post) � dom(pre)

Recall that objects are never destroyed so that dom(pre) � dom(post).

bag create= proc (n: int) returns (bag)

requires n � 0

ensures new(result) ^ resultpost = hfg; ni

bag create small = proc () returns (bag)

ensures new(result) ^ resultpost = hfg; 100i

bag create single = proc (i: int) returns (bag)

ensures new(result) ^ resultpost = hfig; 100i

Figure 2: Creator Speci�cations for Bags

4.3 Type Speci�cations Need Explicit Invariants

By not including creators in type speci�cations and by allowing subtypes to extend supertypes with mutators

we lose a powerful reasoning tool: data type induction. Data type induction is used to prove type invariants.

The base case of the rule requires that each creator of the type establish the invariant; the inductive case

requires that each method (in particular each mutator) preserve the invariant. Without the creators, we have

no base case. Without knowing all mutators of type � (as added by � 's subtypes), we have an incomplete

inductive case. With no data type induction rule, we cannot prove type invariants!

To compensate for the lack of a data type induction rule, we state the invariant explicitly in the type

speci�cation through an invariant clause; if the invariant is trivial (i.e., identical to \true"), the clause can

be omitted. The invariant de�nes the legal values of its type � . For example, we include

invariant j b�:elems j � b�:bound

in the type speci�cation of Figure 1 to state that the size of a bounded bag never exceeds its bound. The

predicate �(x�) appearing in an invariant clause for type � stands for the predicate: For all computations,

c, and all states � in c,

6

8x : � : x 2 dom(�)) �(x�)

Any additional invariant property must follow from the conjunction of the type's invariant and invariants

that hold for the entire value space. For example, we could show that the size of a bag is nonnegative because

this is true for all mathematical multiset values.

As part of specifying a type and its creators we must show that the invariant holds for all objects of the

type. All creators for a type � must establish � 's invariant, I� :

For each creator for type � , show for all x :� that I� [resultpost=x�].

where P [a=b] stands for predicate P with every occurrence of b replaced by a. Similarly, each producer must

establish the invariant on its newly-created object. In addition, each mutator of the type must preserve the

invariant. To prove this, we assume each mutator is called on an object of type � with a legal value (one

that satis�es the invariant), and show that any value of a � object it modi�es is legal:

For each mutator m of � , for all x :� assume I� [xpre=x�] and show I� [xpost=x�].

For example, we would need to show that the three creators for bag establish the invariant, and that

put and get preserve the invariant for bag. (We can ignore card and equal because they are observers.)

Informally the invariant holds because each creator guarantees that the size is no larger than the bound;

put's pre-condition checks that there is enough room in the bag for another element; and get either decreases

the size of the bag or leaves it the same.

The loss of data type induction means that additional invariants cannot be proved. Therefore the speci�er

must be careful to de�ne an invariant that is strong enough that all desired invariants follow from it.

4.4 Type Speci�cations Need Explicit Constraints

We are interested in the history properties of objects in addition to their invariant properties. We can

formulate history properties as predicates over state pairs, and prove them using the history rule:

History Rule: For each of the i mutators m of � , for all x : � :

mi:pre ^mi:post) �[xpre=x�; xpost=x]

�(x�; x)

We cannot use this history rule directly, however. It is incomplete since subtypes may de�ne additional

mutators. If we use it without considering the extra mutators, it is easy to prove properties that do not hold

for subtype objects!

To compensate for the lack of the history rule, we state history properties explicitly in the type speci-

�cation through a constraint clause2; if the constraint is trivial, the clause can be omitted. For example,

the constraint

constraint b�:bound = b :bound

in the speci�cation of bag declares that a bag's bound never changes. As another example, consider a fat set

object that has an insert but no delete method; fat sets only grow in size. The constraint for fat set would

be:

constraint 8 i : int : i 2 s�) i 2 s

The predicate �(x�; x) appearing in a constraint clause for type � stands for the predicate: For all

computations, c, and all states � and in c such that � precedes ,

8x : � : x 2 dom(�)) �(x�; x)

2The use of the term \constraint" is borrowed from the Ina Jo speci�cation language [SH92], which also includes constraints
in speci�cations.

7

Note that we do not require that be the immediate successor of � in c.

Just as we had to prove that methods preserve the invariant, we must show that they satisfy the constraint.

This is done by using the history rule for each mutator.

The loss of the history rule is analogous to the loss of a data type induction rule. A practical consequence

of not having a history rule is that the speci�er must make the constraint strong enough so that all desired

history properties follow from it.

5 The Meaning of Subtype

5.1 Specifying Subtypes

To state that a type is a subtype of some other type, we simply append a subtype clause to its speci�cation.

We allow multiple supertypes; there would be a separate subtype clause for each. An example is given in

Figure 3.

A subtype's value space may be di�erent from its supertype's. For example, in the �gure the sort, S,

for bounded stack values is de�ned in BStack as a pair, hitems; limiti, where items is a sequence of integers

and limit is a natural number. The invariant indicates that the length of the stack's sequence component is

less than or equal to its limit. The constraint indicates that the stack's limit does not change. In the pre-

and post-conditions, [] stands for the empty sequence, jj is concatenation, last picks o� the last element of

a sequence, and allButLast returns a new sequence with all but the last element of its argument.

Under the subtype clause we de�ne an abstraction function, A, that relates stack values to bag values

by relying on the helping function, mk elems, that maps sequences to multisets in the obvious manner. (We

will revisit this abstraction function in Section 5.3.) The subtype clause also lets speci�ers relate subtype

methods to those of the supertype. The subtype must provide all methods of its supertype; we refer to these

as the inherited methods.3 Inherited methods can be renamed, e.g., push for put; all other methods of the

supertype are inherited without renaming, e.g., equal. In addition to the inherited methods, the subtype

may also have some extra methods, e.g., swap top. (Stack's equal method must take a bag as an argument

to satisfy the contravariance requirement. We discuss this issue further in Section 6.1.)

5.2 De�nition of Subtype

The formal de�nition of the subtype relation, �, is given in Figure 4. It relates two types, � and � , each of

whose speci�cations respectively preserves its invariant, I� and I� , and satis�es its constraint, C� and C� .

In the rules, since x is an object of type �, its value (xpre or xpost) is a member of S and therefore cannot be

used directly in the predicates about � objects (which are in terms of values in T). The abstraction function

A is used to translate these values so that the predicates about � objects make sense. A may be partial,

need not be onto, but can be many-to-one. We require that an abstraction function be de�ned for all legal

values of the subtype (although it need not be de�ned for values that do not satisfy the subtype invariant).

Moreover, it must map legal values of the subtype to legal values of the supertype.

The �rst clause addresses the need to relate inherited methods of the subtype. Our formulation is similar

to America's [Ame90]. The �rst two signature rules are the standard contra/covariance rules. The exception

rule says that m� may not signal more than m� , since a caller of a method on a supertype object should not

expect to handle an unknown exception. The pre- and post-condition rules are the intuitive counterparts to

the contravariant and covariant rules for signatures. The pre-condition rule ensures the subtype's method

can be called at least in any state required by the supertype. The post-condition rule says that the subtype

method's post-condition can be stronger than the supertype method's post-condition; hence, any property

that can be proved based on the supertype method's post-condition also follows from the subtype's method's

post-condition.

The second clause addresses preserving program-independent properties. The invariant rule and the

assumption that the type speci�cation preserves the invariant su�ces to argue that invariant properties of a

supertype are preserved by the subtype. The argument for the preservation of subtype's history properties

3We do not mean that the subtype inherits the code of these methods but simply that it provides methods with the same

behavior (as de�ned below) as the corresponding supertype methods.

8

stack = type

uses BStack (stack for S)

for all s: stack

invariant length(s�:items) � s�:limit

constraint s�:limit = s :limit

push = proc (i: int)

requires length(spre :items) < spre:limit

modi�es s

ensures spost:items = spre:items jj [i] ^ spost:limit = spre:limit

pop = proc () returns (int)

requires spre:items 6= []

modi�es s

ensures result = last(spre:items) ^ spost:items = allButLast(spre :items) ^

spost:limit = spre:limit

swap top = proc (i: int)

requires spre:items 6= []

modi�es s

ensures spost:items = allButLast(spre :items) jj [i] ^ spost:limit = spre:limit

height = proc () returns (int)

ensures result = length(spre:items)

equal = proc (t: bag) returns (bool)

ensures result = (s = t)

subtype of bag (push for put, pop for get, height for card)

8st : S : A(st) = hmk elems(st:items); st:limiti

where mk elems : Seq !M

8i : Int; sq : Seq

mk elems([]) = f g

mk elems(sq jj [i]) = mk elems(sq) [fig

end stack

Figure 3: Stack Type

9

Definition of the subtype relation, �: � = hO�; S;M i is a subtype of � = hO� ; T;N i if

there exists an abstraction function, A : S ! T , and a renaming map, R :M ! N , such that:

1. Subtype methods preserve the supertype methods' behavior. If m� of � is the corresponding

renamed method m� of �, the following rules must hold:

� Signature rule.

{ Contravariance of arguments. m� and m� have the same number of arguments. If

the list of argument types of m� is �i and that of m� is �i, then 8i : �i � �i.

{ Covariance of result. Either both m� and m� have a result or neither has. If there

is a result, let m� 's result type be � and m� 's be �. Then � � �.

{ Exception rule. The exceptions signaled by m� are contained in the set of exceptions

signaled by m� .

� Methods rule. For all x : �:

{ Pre-condition rule. m� :pre[A(xpre)=xpre]) m� :pre:

{ Post-condition rule. m� :post) m� :post[A(xpre)=xpre; A(xpost)=xpost]

2. Subtypes preserve supertype properties. For all computations, c, and all states � and in c

such that � precedes , for all x : �:

� Invariant Rule. Subtype invariants ensure supertype invariants.

I�) I� [A(x�)=x�]

� Constraint Rule. Subtype constraints ensure supertype constraints.

C�) C� [A(x�)=x�; A(x)=x]

Figure 4: De�nition of the Subtype Relation

is completely analogous, using the constraint rule and the assumption that the type speci�cation satis�es its

constraint.

We do not include the invariant in the methods (or constraint) rule directly. For example, the pre-

condition rule could have been

(m� :pre[A(xpre)=xpre] ^ I� [A(xpre)=xpre])) m� :pre

We omit adding the invariant because if it is needed in doing a proof it can always be assumed, since it is

known to be true for all objects of its type.

Note that in the various rules we require x : �, yet x appears in predicates concerning � objects as well.

This makes sense because � � � .

5.3 Applying the De�nition of Subtyping as a Checklist

Proofs of the subtype relation are usually obvious and can be done by inspection. Typically, the only interest-

ing part is the de�nition of the abstraction function; the other parts of the proof are usually straightforward.

However, this section goes through the steps of an informal proof just to show what kind of reasoning is

involved. Formal versions of these informal proofs are given in [LW92].

Let's revisit the stack and bag example using our de�nition as a checklist. Here

� = hOstack; S; fpush; pop; swap top; height; equalgi

� = hObag; B; fput; get; card; equalgi

Recall that we represent a bounded bag's value as a pair, helems; boundi, of a multiset of integers and a �xed

bound, and a bounded stack's value as a pair, hitems; limiti, of a sequence of integers and a �xed bound. It

can easily be shown that each speci�cation preserves its invariant and satis�es its constraint.

10

We use the abstraction function and the renaming map given in the speci�cation for stack in Figure 3.

The abstraction function states that for all st : S

A(st) = hmk elems(st:items); st:limiti

where the helping function, mk elems : Seq !M , maps sequences to multisets such that for all sq : Seq; i :

Int:

mk elems([]) = f g

mk elems(sq jj [i]) = mk elems(sq) [fig

A is partial; it is de�ned only for sequence{natural numbers pairs, hitems; limiti, where limit is greater than

or equal to the size of items.

The renaming map R is

R(push) = put

R(pop) = get

R(height) = card

R(equal) = equal

Checking the signature and exception rules is easy and could be done by the compiler.

Next, we show the correspondences between push and put, between pop and get, etc. Let's look at the pre-

and post-condition rules for just one method, push. Informally, the pre-condition rule for put/push requires

that we show4:

j A(spre):elems j < A(spre):bound

)

length(spre:items) < spre:limit

Intuitively, the pre-condition rule holds because the length of stack is the same as the size of the corresponding

bag and the limit of the stack is the same as the bound for the bag. Here is an informal proof with slightly

more detail:

1. A maps the stack's sequence component to the bag's multiset by putting all elements of the sequence

into the multiset. Therefore the length of the sequence spre:items is equal to the size of the multiset

A(spre):elems.

2. Also, A maps the limit of the stack to the bound of the bag so that spre:limit = A(spre):bound.

3. From put's pre-condition we know j A(spre):elems j < A(spre):bound.

4. push's pre-condition holds by substituting equals for equals.

Note the role of the abstraction function in this proof. It allows us to relate stack and bag values, and

therefore we can relate predicates about bag values to those about stack values and vice versa. Also, note

how we depend on A being a function (in step (4) where we use the substitutivity property of equality).

The post-condition rule requires that we show push's post-condition implies put's. We can deal with the

modi�es and ensures parts separately. The modi�es part holds because the same object is mentioned in

both speci�cations. The ensures part follows from the de�nition of the abstraction function.

The invariant rule requires that we show that the invariant on stacks:

length(s�:items) � s�:limit

implies that on bags:

j A(s�):elems j � A(s�):bound

4Note that we are reasoning in terms of the values of the object, s, and that b and s refer to the same object (b appears in
the bag speci�cation).

11

We can show this by a simple proof of induction on the length of the sequence of a bounded stack.

The constraint rule requires that we show that the constraint on stacks:

s�:limit = s :limit

implies that on bags:

A(s�):bound = A(s):bound

This is true because the length of the sequence component of a stack is the same as the size of the multiset

component of its bag counterpart.

Note that we do not have to say anything speci�c for swap top; it is taken care of just like all the other

methods when we show that the speci�cation of stack satis�es its invariant and constraint.

6 Type Hierarchies

The requirement we impose on subtypes is very strong and raises a concern that it might rule out many

useful subtype relations. To address this concern we looked at a number of examples. We found that our

technique captures what people want from a hierarchy mechanism, but we also discovered some surprises.

The examples led us to classify subtype relationships into two broad categories. In the �rst category,

the subtype extends the supertype by providing additional methods and possibly additional \state." In

the second, the subtype is more constrained than the supertype. We discuss these relationships below. In

practice, many type families will exhibit both kinds of relationships.

6.1 Extension Subtypes

A subtype extends its supertype if its objects have extra methods in addition to those of the supertype.

Abstraction functions for extension subtypes are onto, i.e., the range of the abstraction function is the set of

all legal values of the supertype. The subtype might simply have more methods; in this case the abstraction

function is one-to-one. Or its objects might also have more \state," i.e., they might record information that

is not present in objects of the supertype; in this case the abstraction function is many-to-one.

As an example of the one-to-one case, consider a type intset (for set of integers) with methods to insert

and delete elements, to select elements, and to provide the size of the set. A subtype, intset2, might have

more methods, e.g., union, is empty. Here there is no extra state, just extra methods. Suppose intset's

invariant and constraints are both trivial; intset2's would be as well. Thus, proving that intset2 preserves

intset's invariant and constraint is trivial.

It is easy to discover when a proposed subtype really is not one. For example, the fat set type discussed

earlier has an insert method but no delete method. Intset is not a subtype of fat set because fat sets only

grow while intsets grow and shrink; intset does not preserve various history properties of fat set, in particular,

the constraint that once some integer is in the fat set, it remains in the fat set. The attempt to show that

the intset constraint (which is trivial) implies that of fat set would fail.

As a simple example of a many-to-one case, consider immutable pairs and triples (Figure 5). Pairs have

methods that fetch the �rst and second elements; triples have these methods plus an additional one to fetch

the third element. Triple is a subtype of pair and so is semi-mutable triple with methods to fetch the �rst,

second, and third elements and to replace the third element because replacing the third element does not

a�ect the �rst or second element. This example shows that it is possible to have a mutable subtype of an

immutable supertype, provided the mutations are invisible to users of the supertype.

Mutations of a subtype that would be visible through the methods of an immutable supertype are ruled

out. For example, an immutable sequence, whose elements can be fetched but not stored, is not a supertype

of mutable array, which provides a store method in addition to the sequence methods. For sequences we can

prove elements do not change; this is not true for arrays. The attempt to construct the subtype relation will

fail because the constraint for sequences does not follow from that for arrays.

Many examples of extension subtypes are found in the literature. One common example concerns persons,

employees, and students (Figure 6). A person object has methods that report its properties such as its name,

age, and possibly its relationship to other persons (e.g., its parents or children). Student and employee are

12

immutable pair

immutable triple semi-mutable triple

Figure 5: Pairs and Triples

subtypes of person; in each case they have additional properties, e.g., a student id number, an employee

employer and salary. In addition, type student employee is a subtype of both student and employee (and

also person, since the subtype relation is transitive). In this example, the subtype objects have more state

than those of the supertype as well as more methods.

person

student employee

student_employee

Figure 6: Person, Student, and Employee

Another example from the database literature concerns di�erent kinds of ships [HM81]. The supertype is

generic ships with methods to determine such things as who is the captain and where the ship is registered.

Subtypes contain more specialized ships such as tankers and freighters. There can be quite an elaborate

hierarchy (e.g., tankers are a special kind of freighter). Windows are another well-known example [HO87];

subtypes include bordered windows, colored windows, and scrollable windows.

Common examples of subtype relationships are allowed by our de�nition provided the equal method (and

other similar methods) are de�ned properly in the subtype. Suppose supertype � provides an equal method

and consider a particular call x.equal(y). The di�culty arises when x and y actually belong to �, a subtype

of � . If objects of the subtype have additional state, x and y may di�er when considered as subtype objects

but ought to be considered equal when considered as supertype objects.

For example, consider immutable triples x = h0; 0; 0i and y = h0; 0; 1i. Suppose the speci�cation of the

equal method for pairs says:

equal = proc (q: pair) returns (bool)

ensures result = (p:first = q:first ^ p:second = q:second)

(We are using p to refer to the method's object.) However, we would expect two triples to be equal only if

their �rst, second, and third components were equal. If a program using triples had just observed that x and

y di�er in their third element, we would expect x.equal(y) to return \false," but if the program were using

them as pairs, and had just observed that their �rst and second elements were equal, it would be wrong for

the equal method to return false.

The way to resolve this dilemma is to have two equal methods in triple:

pair equal = proc (p: pair) returns (bool)

ensures result = (p:first = q:first ^ p:second = q:second)

13

triple equal = proc (p: triple) returns (bool)

ensures result = (p:first = q:first ^ p:second = q:second

^ p:third = q:third)

One of them (pair equal) simulates the equal method for pair; the other

(triple equal) is a method just on triples. (In some object-oriented languages, such as Java, the additional

equal methods are obtained by overloading.)

The problem is not limited to equality methods. It also a�ects methods that \expose" the abstract state

of objects, e.g., an unparse method that returns a string representation of the abstract state of its object.

x.unparse() ought to return a representation of a pair if called in a context in which x is considered to be a

pair, but it ought to return a representation of a triple in a context in which x is known to be a triple (or

some subtype of triple).

The need for several equality methods seems natural for realistic examples. For example, asking whether

e1 and e2 are the same person is di�erent from asking if they are the same employee. In the case of a person

holding two jobs, the answer might be true for the question about person but false for the question about

employee.

6.2 Constrained Subtypes

The second kind of subtype relation occurs when the subtype is more constrained than the supertype. In this

case, the supertype speci�cation is written in a way that allows variation in behavior among its subtypes.

Subtypes constrain the supertype by reducing the variability. The abstraction function is usually into rather

than onto. The subtype may extend those supertype objects that it simulates by providing additional

methods and/or state.

Since constrained subtypes reduce variation, it is crucial when de�ning this kind of type hierarchy to

think carefully about what variability is permitted for the subtypes. The variability will show up in the

supertype speci�cations in two ways: in the invariant and constraint, and also in the speci�cations of the

individual methods. In both cases the supertype de�nitions will be nondeterministic in those places where

di�erent subtypes are expected to provide di�erent behavior.

A very simple example concerns elephants. Elephants come in many colors (realistically grey and white,

but we will also allow blue ones). However all albino elephants are white and all royal elephants are blue.

Figure 7 shows the elephant hierarchy. The set of legal values for regular elephants includes all elephants

whose color is grey or blue or white:

invariant e�:color = white _ e�:color = grey _ e�:color = blue

The set of legal values for royal elephants is a subset of those for regular elephants:

invariant e�:color = blue

and hence the abstraction function is into. The situation for albino elephants is similar. Furthermore, the

elephant method that returns the color (if there is such a method) can return grey or blue or white, i.e.,

it is nondeterministic; the subtypes restrict the nondeterminism for this method by de�ning it to return a

specifc color.

This simple example has led others to de�ne a subtyping relation that requires non-monotonic reasoning

[Lip92], but we believe it is better to use variability in the supertype speci�cation and straightforward

reasoning methods. However, the example shows that a speci�er of a type family has to anticipate subtypes

and capture the variation among them in the speci�cation of the supertype.

The bag type discussed in Section 4.1 has two kinds of variability. First, as discussed earlier, the speci-

�cation of get is nondeterministic because it does not constrain which element of the bag is removed. This

nondeterminism allows stack to be a subtype of bag: the speci�cation of pop constrains the nondetermin-

ism. We could also de�ne a queue that is a subtype of bag; its dequeue method would also constrain the

nondeterminism of get but in a way di�erent from pop.

In addition, the actual value of the bound for bags is not de�ned; it can be any natural number, thus

allowing subtypes to have di�erent bounds. This variability shows up in the speci�cation of put, where we

14

elephant

royal albino

Figure 7: Elephant Hierarchy

do not say what speci�c bound value causes the call to fail. Therefore, a user of put must be prepared for a

failure. (Of course the user could deduce that a particular call will succeed, based on a previous sequence of

method calls and the constraint that the bound of a bag does not change.) A subtype of bag might limit the

bound to a �xed value, or to a smaller range. Several subtypes of bag are shown in Figure 8; mediumbags

have various bounds, so that this type might have its own subtypes, e.g., bag 150.

bag

largebag mediumbag smallbag

bag_150

32
(100 <= bound <= 1000)

(bound = 150)

(bound = 20)(bound = 2)

Figure 8: A Type Family for Bags

The bag hierarchy may seem counterintuitive, since we might expect that bags with smaller bounds

should be subtypes of bags with larger bounds. For example, we might expect smallbag to be a subtype

of largebag. However, the speci�cations for the two types are incompatible: the bound of every largebag is

232, which is clearly not true for smallbags. Furthermore, this di�erence is observable via the methods: It is

legal to call the put method on a largebag whose size is greater than or equal to 20, but the call is not legal

for a smallbag. Therefore the pre-condition rule is not satis�ed.

Although the bag type can have subtypes with di�erent bounds, it cannot have subtypes where the

bounds of the bags can change dynamically. If we wanted a type family that included both bag and such

dynamic bags, we would need to de�ne a supertype in which the bound is allowed, but not required, to

vary. Figure 9 shows the new type hierarchy. Dynamic bags have a bound that tracks the size: each time an

element is added or removed from a dynamic bag, the bound changes to match the new size. Flexible bags

have an additional mutator, change bound:

change bound = proc (n: int)

requires n � jbpre:elemsj

modi�es b

ensures bpost:elems = bpre:elems ^ bpost:bound = n

Notice that other types in the family need not have a change bound method.

This example illustrates the di�erent ways that subtypes reduce variability. All varying bag subtypes

reduce variability in the speci�cation for the put method; varying bag's put method is non-deterministic,

15

varying_bag

dynamic_bag bagflexible_bag

I: size <= bound
C: true

I: size <= bound
C: true

I: size <= bound
C: bound stays the same

I: size = bound
C: true

[...as in Fig. 8...]

Figure 9: Another Type Family for Bags

since it might add the element (and change the bound) if the size is the same as the bound, or it might

not. Bag and exible bag reduce this variability by not adding the element, whereas dynamic bag does

add the element. In addition, bag reduces variability by restricting the constraint: the trivial constraint

for varying bag can be thought of as stating \either a bag's bound may change or it stays the same;" the

constraint for bag reduces this variability by making a choice (\the bag's bound stays the same") and users

can then rely on this property for bags and its subtypes. Dynamic bag reduces variability by restricting

varying bag's invariant so that it no longer allows the size to be less than the bound. Finally, exible bag

reduces variability because of the extra mutator, change bound; all its subtypes must allow explicit re-setting

of the bound.

Another example is a family of integer counters shown in Figure 10. When a counter is advanced, we

only know that its value gets bigger, so that the constraint is simply

constraint c� � c

The doubler and multiplier subtypes have stronger constraints. For example, a multiplier's value always

increases by a multiple, so that its constraint is:

constraint 9 n : int : [n > 0 ^ c� = n � c]

For a family like this, we might choose to have an advance method for counter (so that each of its subtypes is

constrained to have this method) or we might not. If we do provide an advance method, its speci�cation will

have to be nondeterministic (i.e., it merely states the the size of the counter grows) to allow the subtypes to

provide the de�nitions that are appropriate for them.

In the case of the bag family illustrated in Figure 8, all types in the hierarchy might be \real" in the sense

that they have objects. However, sometimes supertypes are virtual; they de�ne the properties all subtypes

have in common but have no objects of their own. Varying bag of Figure 9 might be such a type.

Virtual types are useful in many type hierarchies. For example, we would use them to construct a

hierarchy for integers. Smaller integers cannot be a subtype of larger integers because of observable di�erences

in behavior; for example, an overow exception that would occur when adding two 32-bit integers would

not occur if they were 64-bit integers. Also, larger integers cannot be a subtype of smaller ones because

exceptions do not occur when expected. However, we clearly would like integers of di�erent sizes to be

related. This is accomplished by designing a virtual supertype that includes them. Such a hierarchy is

shown in Figure 11, where integer is a virtual type whose invariant simply says that the size of an integer is

greater than zero. Integer types with di�erent sizes are subtypes of integer. In addition, small integer types

are subtypes of regular int, another virtual type; the invariant in the speci�cation for regular int states that

the size of an integer is either 16 bits or 32 bits. An integer family might have a structure like this, or it

might be atter by having all integer types be direct subtypes of integer.

16

counter

(value never decreases)

incrementer

(value never decreases)

doubler

(value doubles)

multiplier

(value multiplies)

Figure 10: Type Family for Counters

integer

64-bit-int regular_int

32-bit-int 16-bit-int

Figure 11: Integer Family

7 Related Work

Some research on de�ning subtype relations is concerned with capturing constraints on method signatures via

the contra/covariance rules, such as those used in languages like Trellis/Owl [SCB+86], Emerald[BHJ+87],

Quest [Car88], Ei�el [Mey88], POOL [Ame90], and to a limited extent Modula-3 [Nel91]. Our rules place

constraints not just on the signatures of an object's methods, but also on their behavior.

Our work is most similar to that of America [Ame91], who has proposed rules for determining based

on type speci�cations whether one type is a subtype of another. Meyer [Mey88] also uses pre- and post-

condition rules similar to America's and ours. Cusack's [Cus91] approach of relating type speci�cations

de�nes subtyping in terms of strengthening state invariants. However, none of these authors considers neither

the problems introduced by extra mutators nor the preservation of history properties. Therefore, they allow

certain subtype relations that we forbid (e.g., intset could be a subtype of fat set in these approaches).

Our use of constraints in place of the history rule is one of two techniques discussed in [LW94]. That

paper proposes a second technique in which there is no constraint; instead, extra methods are not allowed

to introduce new behavior. It requires that the behavior of each extra mutator be \explained" in terms of

existing behavior, through existing methods. We believe the use of constraints is simpler and easier to reason

about than this \explanation" approach.

The emphasis on semantics of abstract types is a prominent feature of the work by Leavens. In his Ph.D.

thesis Leavens [Lea89] de�nes types in terms of algebras and subtyping in terms of a simulation relation

between them. His simulation relations are a more general form of our abstraction functions. Leavens

considered only immutable types. Dhara [Dha92, DL92, LD92] extends Leavens' thesis work to deal with

mutable types, but rules out the cases where extra methods cause problems, e.g., aliasing. Because of their

restrictions they allow some subtype relations to hold where we do not. For example, they allow mutable

pairs to be a subtype of immutable pairs whereas we do not.

Others have worked on the speci�cation of types and subtypes. For example, many have proposed Z as

the basis of speci�cations of object types[CL91, DD90, CDD+89]; Goguen and Meseguer[GM87] use FOOPS;

Leavens and his colleagues use Larch[Lea91, LW90, DL92]. Though several of these researchers separate the

speci�cation of an object's creators from its other methods, none has identi�ed the problem posed by the

17

missing creators, and thus none has provided an explicit solution to this problem.

8 Summary

We de�ned a new notion of the subtype relation based on the semantic properties of the subtype and

supertype. An object's type determines both a set of legal values and an interface with its environment

(through calls on its methods). Thus, we are interested in preserving properties about supertype values

and methods when designing a subtype. We require that a subtype preserve the behavior of the supertype

methods and also all invariant and history properties of its supertype. We are particularly interested in an

object's observable behavior (state changes), thus motivating our focus on history properties and on mutable

types and mutators.

We also presented a way to specify the semantic properties of types formally. One reason we chose to

base our approach on Larch is that Larch allows formal proofs to be done entirely in terms of speci�cations.

In fact, once the theorems corresponding to our subtyping rules are formally stated in Larch, their proofs are

almost completely mechanical|a matter of symbol manipulation|and could be done with the assistance of

the Larch Prover[GG89, ZW97].

In developing our de�nition, we were motivated primarily by pragmatics. Our intention is to capture

the intuition programmers apply when designing type hierarchies in object-oriented languages. However,

intuition in the absence of precision can often go astray or lead to confusion. This is why it has been unclear

how to organize certain type hierarchies such as integers. Our de�nition sheds light on such hierarchies

and helps in uncovering new designs. It also supports the kind of reasoning that is needed to ensure that

programs that work correctly using the supertype continue to work correctly with the subtype.

Programmers have found our approach relatively easy to apply and use it primarily in an informal way.

The essence of a subtype relationship is expressed in the mappings. These mappings can be de�ned informally,

in much the same way that abstraction functions and representation invariants are given as comments in a

program that implements an abstract type. The proofs can also be done informally, in the style given in

Section 5.3; they are usually straightforward and can be done by inspection.

We also showed that our approach is useful by looking at a number of examples. This led us to identify

two kinds of subtypes: ones that extend the supertype, and ones that constrain it. In the former case, the

supertype can be de�ned without a great deal of thought about the subtypes, but in the latter case, this is

not possible; instead the supertype speci�cation must be done carefully so that it allows all of the intended

subtypes. In particular the speci�cation of the supertype must contain su�cient nondeterminism in the

invariant, constraint, and method speci�cations.

Our analysis raises two issues about type hierarchy that have been ignored previously by both the

formal methods and object-oriented communities. First, subtypes can have more methods, speci�cally more

mutators, than their supertypes. Second, subtypes need to have di�erent creators than supertypes. These

issues forced us to revisit proof rules normally associated with type speci�cations: the data type induction

rule and the history rule. We decided to preclude the use of these rules, and to have explicit invariants

and constraints to replace them. Although it is possible to de�ne a subtype relation that avoids explicit

invariants and constraints, doing so is awkward and often requires invention of superuous supertype methods

and creators. We prefer to use explicit invariants and constraints because this allows a more direct way of

capturing the designer's intent.

References

[Ame90] America, P. A parallel object-oriented language with inheritance and subtyping. SIGPLAN,

25(10):161{168, October 1990.

[Ame91] America, P. Designing an object-oriented programming language with behavioural subtyping. In

de Bakker, J. W., de Roever, W. P., and Rozenberg, G., editors, Foundations of Object-Oriented

Languages, REX School/Workshop, Noordwijkerhout, The Netherlands, May/June 1990, volume

489 of LNCS, pages 60{90. Springer-Verlag, NY, 1991.

18

[BHJ+87] Black, A. P., Hutchinson, N., Jul, E., Levy, H. M., and Carter, L. Distribution and abstract

types in Emerald. IEEE TSE, 13(1):65{76, January 1987.

[Car88] Cardelli, L. A semantics of multiple inheritance. Information and Computation, 76:138{164,

1988.

[CDD+89] Carrington, D., Duke, D., Duke, R., King, P., Rose, G., and Smith, P. Object-Z: An object ori-

ented extension to Z. In FORTE89, International Conference on Formal Description Techniques,

December 1989.

[CL91] Cusack, E. and Lai, M. Object-oriented speci�cation in LOTOS and Z, or my cat really is object-

oriented! In de Bakker, J. W., de Roever, W. P., and Rozenberg, G., editors, Foundations of

Object Oriented Languages, pages 179{202. Springer Verlag, June 1991. LNCS 489.

[Cus91] Cusack, E. Inheritance in object oriented Z. In Proceedings of ECOOP '91. Springer-Verlag,

1991.

[DD90] Duke, D. and Duke, R. A history model for classes in object-Z. In Proceedings of VDM '90:

VDM and Z. Springer-Verlag, 1990.

[Dha92] Dhara, K. K. Subtyping among mutable types in object-oriented programming languages. Mas-

ter's thesis, Iowa State University, Ames, Iowa, 1992. Master's Thesis.

[DL92] Dhara, K. K. and Leavens, G. T. Subtyping for mutable types in object-oriented programming

languages. Technical Report 92-36, Department of Computer Science, Iowa State University,

Ames, Iowa, November 1992.

[DMN70] Dahl, O.-J., Myrhaug, B., and Nygaard, K. SIMULA common base language. Technical Re-

port 22, Norwegian Computing Center, Oslo, Norway, 1970.

[GG89] Garland, S. and Guttag, J. An overview of LP, the Larch Prover. In Proceedings of the Third

International Conference on Rewriting Techniques and Applications, pages 137{151, Chapel Hill,

NC, April 1989. Lecture Notes in Computer Science 355.

[GHW85] Guttag, J. V., Horning, J. J., and Wing, J. M. The Larch family of speci�cation languages. IEEE

Software, 2(5):24{36, September 1985.

[GM87] Goguen, J. A. and Meseguer, J. Unifying functional, object-oriented and relational programming

with logical semantics. In Shriver, B. and Wegner, P., editors, Research Directions in Object

Oriented Programming. MIT Press, 1987.

[HM81] Hammer, M. and McLeod, D. A semantic database model. ACM Trans. Database Systems,

6(3):351{386, 1981.

[HO87] Halbert, D. C. and O'Brien, P. D. Using types and inheritance in object-oriented programming.

IEEE Software, 4(5):71{79, September 1987.

[Hoa72] Hoare, C. Proof of correctness of data representations. Acta Informatica, 1(1):271{281, 1972.

[LD92] Leavens, G. T. and Dhara, K. K. A foundation for the model theory of abstract data types with

mutation and aliasing (preliminary version). Technical Report 92-35, Department of Computer

Science, Iowa State University, Ames, Iowa, November 1992.

[Lea89] Leavens, G. Verifying object-oriented prograsm that use subtypes. Technical Report 439, MIT

Laboratory for Computer Science, February 1989. Ph.D. thesis.

[Lea91] Leavens, G. T. Modular speci�cation and veri�cation of object-oriented programs. IEEE Soft-

ware, 8(4):72{80, July 1991.

[LG85] Liskov, B. and Guttag, J. Abstraction and Speci�cation in Program Design. MIT Press, 1985.

19

[Lip92] Lipeck, U. Semantics and usage of defaults in speci�cations. In Foundations of Information

Systems Speci�cation and Design, March 1992. Dagstuhl Seminar 9212 Report 35.

[Lis92] Liskov, B. Preliminary design of the Thor object-oriented database system. In Proc. of the

Software Technology Conference. DARPA, April 1992. Also Programming Methodology Group

Memo 74, MIT Laboratory for Computer Science, Cambridge, MA, March 1992.

[LW90] Leavens, G. T. and Weihl, W. E. Reasoning about object-oriented programs that use subtypes.

In ECOOP/OOPSLA '90 Proceedings, 1990.

[LW92] Liskov, B. and Wing, J. Family values: A semantic notion of subtyping. Technical Report 562,

MIT Lab. for Computer Science, 1992. Also available as CMU-CS-92-220.

[LW94] Liskov, B. and Wing, J. A behavioral notion of subtyping. ACM Trans. on Prog. Lang. and

Systems, pages 1811{1841, November 1994.

[Mey88] Meyer, B. Object-oriented Software Construction. Prentice Hall, New York, 1988.

[MS90] Maier, D. and Stein, J. Development and implementation of an object-oriented DBMS. In Zdonik,

S. and Maier, D., editors, Readings in Object-Oriented Database Systems, pages 167{185. Morgan

Kaufmann, 1990.

[Nel91] Nelson, G. Systems Programming with Modula-3. Prentice Hall, 1991.

[SCB+86] Scha�ert, C., Cooper, T., Bullis, B., Kilian, M., and Wilpolt, C. An introduction to Trellis/Owl.

In Proceedings of OOPSLA '86, pages 9{16, September 1986.

[SH92] Scheid, J. and Holtsberg, S. Ina Jo speci�cation language reference manual. Technical Report

TM-6021/001/06, Paramax Systems Corporation, A Unisys Company, June 1992.

[Str86] Stroustrup, B. The C++ Programming Language. Addison-Wesley, 1986.

[ZW97] Zaremski, A. and Wing, J. Speci�cation matching of software components. ACM Trans. on

Software Engineering and Methodology, 6(4):333{369, October 1997.

20

