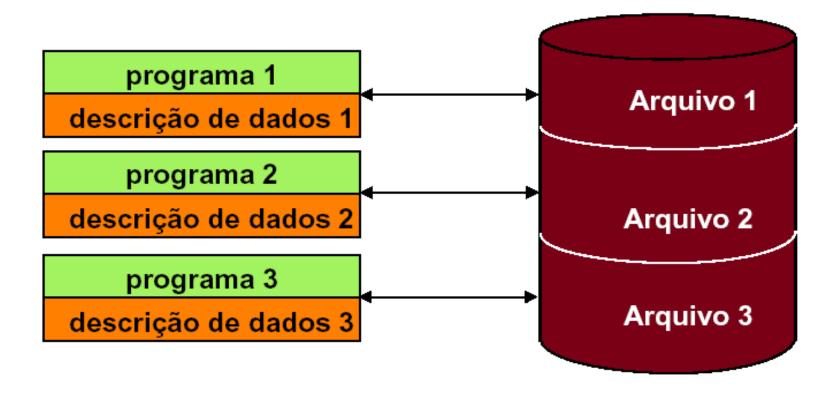
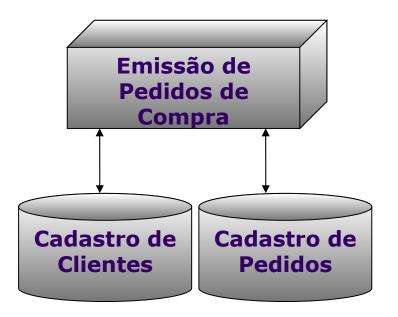
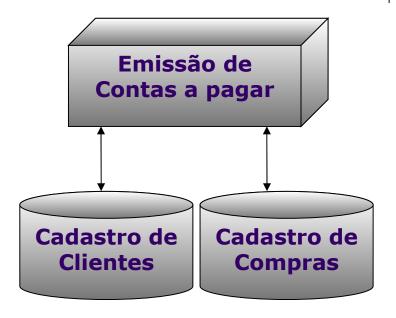
Bases de Dados Distribuídas

Pablo Vieira Florentino

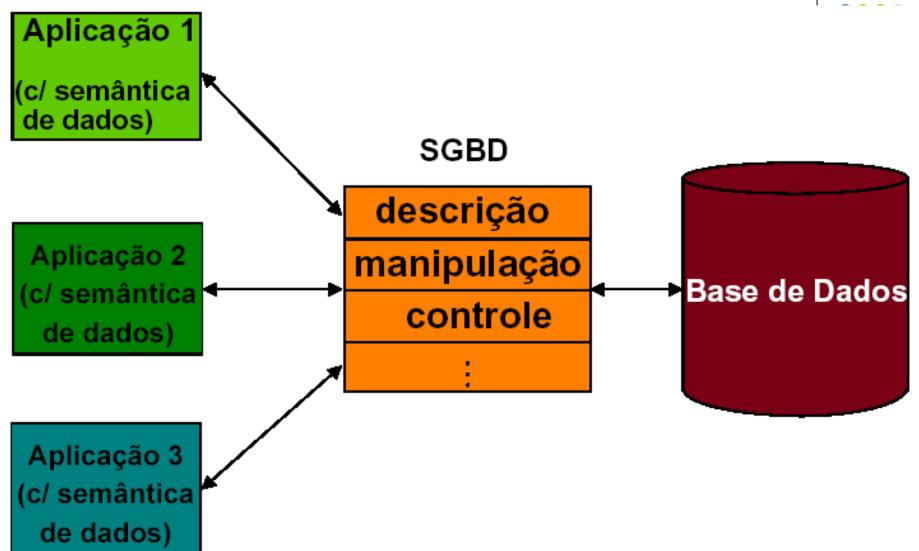

Agenda

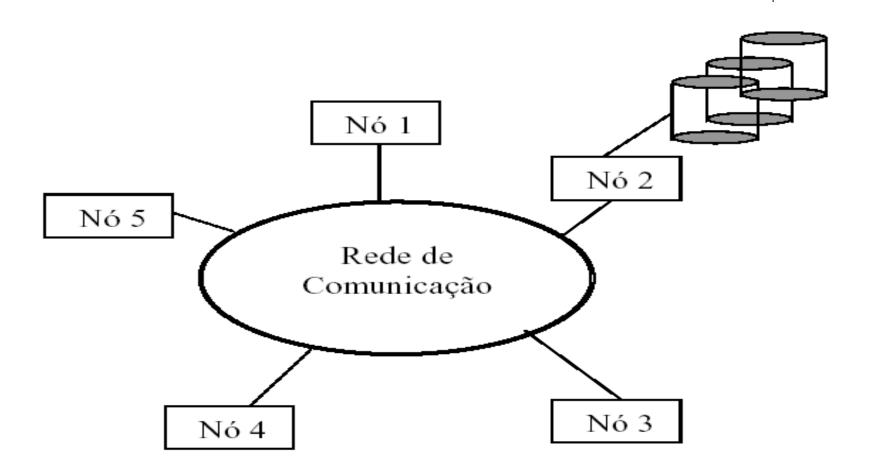
- Contexto
- Arquitetura de SGBDs Distribuído
- Projeto de Bases de dados Distribuídas
- Processamento Distribuído de consultas
- Questões atuais


Sistema Tradicional de Arquivos



Sistema Tradicional de Arquivos

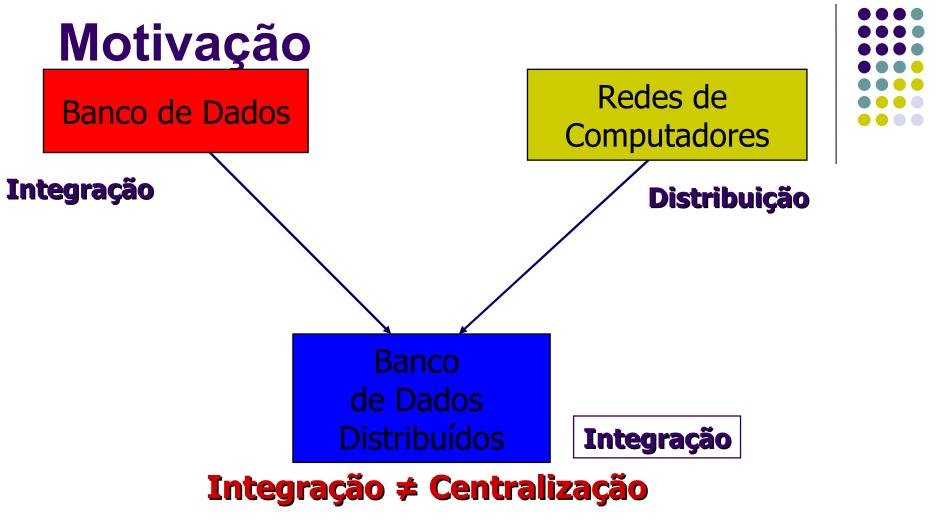



Sistemas baseados em SGBDs

SGBD centralizado sobre uma rede

Elementos Relevantes em uma rede

- Nós processadores que podem
 - variar em tamanho e função
 - incluir microcomputadores, estações de trabalho, minicomputadores e sistemas de computadores de uso em geral
 - Estes processadores são geralmente chamados de nós, dependendo do contexto no qual eles estejam mencionados. Usa-se principalmente o termo nó (lugar, posição), a fim de enfatizar a distribuição física destes sistemas.


Computação Distribuída

 Um conceito a procura de uma definição e um nome?

OU

 Elementos autônomos de processamento (não necessariamente homogêneos) que são interconectados por uma rede de computadores e cooperam para realizar as suas respectivas tarefas?

- Objetivo aumentar o desempenho através de:
 - Diminuição do volume de dados acessados desnecessariamente
 - Aumento da "localidade" e transparência de acesso de dados

Contexto

 Aplicações com grandes volumes de dados manipulados por sítios geograficamente distribuídos

- Necessidade de fragmentação dos dados
- Bancos, Grandes redes comerciais, IBGE,NASA
- Diminuição de custos para montagem de novos sítios
 - Possibilidade de mais sítios para alocação dos fragmentos
- Exemplos de aplicações:
 - Internet/Intranet (Web Based Applications)
 - Aplicações Colaborativas (CSCW)
 - Grids (STOCKINGER, 2001)

Caracterização de um Sistema de Banco de Dados Distribuído

Base de Dados Distribuída

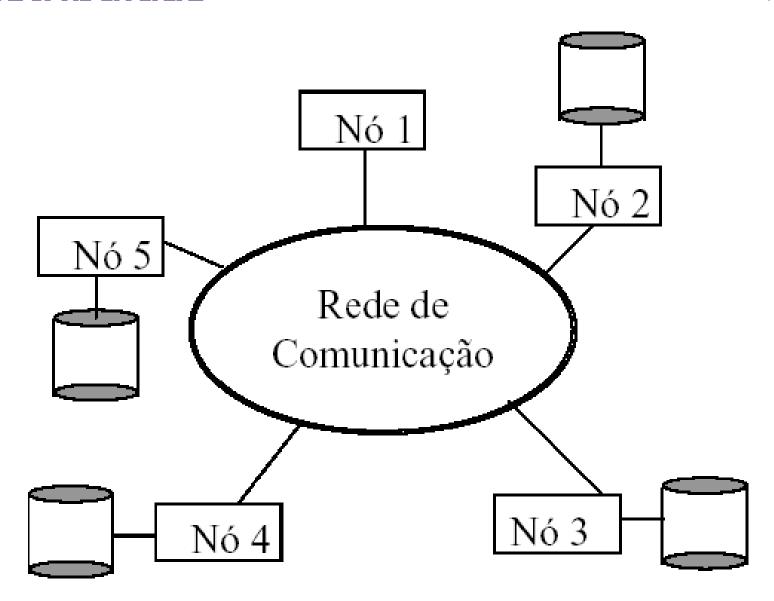
 É uma coleção de diversas bases de dados, interligadas logicamente através de uma rede de computadores

Sistema de Bases de Dados Distribuídas

 É o sistema de software que possibilita a gerência da base de dados distribuída e torna a distribuição transparente para o usuário

Sistema de Banco de Dados Distribuídos – SBDD

É a combinação das bases com o sistema


Principais Características de um SBDD

- Dados armazenados em diferentes locais (ou nós)
- Processadores dos nós interconectados através de rede(s) de computadores
- A base de dados distribuída é realmente uma base de dados e não uma coleção de arquivos
- O sistema possui toda a funcionalidade de um SGBD
- A tecnologia atual → multiprocessadores e cliente/servidor

Ambiente de Bases de Dados Distribuídas

Visão prática de um SBDD

- Um Sistema de Banco de Dados Distribuído (SBDD) consiste em uma coleção de nós, cada qual podendo participar na execução de transações que acessam dados em um ou mais nós.
- Em um SBDD, os dados são <u>armazenado em</u> <u>diversos computadores</u> (nós). Os computadores, em um sistema distribuído, comunicam-se uns com os outros por intermédio de redes de transmissão. Eles <u>não compartilham</u> a <u>memória principal</u> e o <u>relógio</u>.

Visão prática de um SBDD

- Em um SBDD, pode-se definir um nó de computação como um computador (mini, micro, etc.) localizado numa área de organização com certas facilidades de processamento. Em cada um dos nós o software do SGBDD consiste minimamente de:
 - Sistema operacional em cada nó
 - Gerenciador de comunicação para programas remotos
 - SGBD para gerenciamento local do banco de dados

Com as seguintes características:

- sítios disponíveis entre si
- Compartilhamento de um esquema global comum
- Cada site tem transações locais e globais
- Disco próprio
- Memória própria

Visão prática de um SBDD

- Uma solicitação para operar um <u>item</u> <u>de</u> <u>dados não-local</u> poderá fazer com que:
 - esses dados sejam deslocados para o <u>nó local</u>, para processamento local
 - o processamento deve ocorrer no nó remoto e os resultados movimentados para o local
- Para que isto seja possível, as informações de localização devem ser mantidas pelo próprio sistema como parte de seu catálogo, e todas as solicitações de dados, por usuários, devem ser interpretadas pelo sistema de acordo com estas informações contidas no catálogo.

Arquiteturas de Sistemas Bancos de Dados Distribuídos

Autonomia

- Grau de autonomia com que cada SGBD individual trabalha em relação às aplicações e aos outros SGBDs.
- Envolve uma série de fatores e pode classificar os SGBDs em diferentes níveis: altamente integrado, semi-autônomo, autonomia total

Distribuição

 Diz respeito à distribuição física dos dados pelos nós, que pode ser total, parcial ou nenhuma

Heterogeneidade

Do hardware, comunicação ou SGBDs heterogêneos

Vantagens de SBDDs

- Transparência na Gerência dos Dados Distribuídos e Replicados
 - transparência da rede
 - transparência da replicação
 - transparência da fragmentação

Desta forma, os usuários do banco de dados enxergam uma única imagem da base de dados logicamente integrada, embora ela esteja fisicamente distribuída.

Vantagens de SBDDs

Maior Confiabilidade

Maior confiabilidade por trabalharem com componentes replicados, eliminando assim pontos únicos de falha

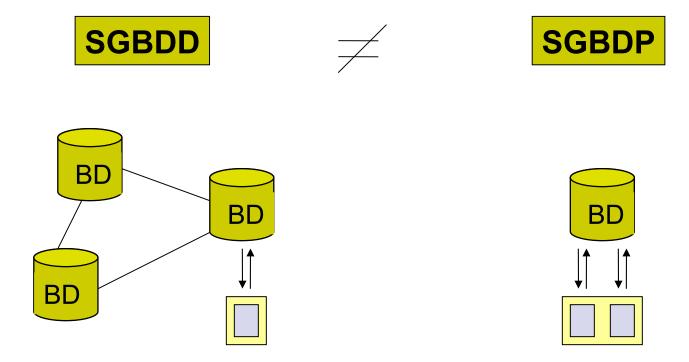
Aumento de Desempenho

- Localização dos Dados (data locality)
- O compartilhamento de recursos não é tão crítico e a localização reduz a demora pelo acesso remoto aos dados
- Paralelismo no Processamento de Consultas
- Otimização do acesso aos dados

Vantagens de SBDDs

Facilidade de Expansão

 A adaptação ao crescimento da base de dados é mais simples.


Outros exemplos de aplicações:

- SIG & Multimídia
 - Informações Textuais X Imagens, Vídeos, Música, etc.
- DatawareHouse

Distribuição vs Paralelismo

 Necessário diferenciar um SGBDD de um sistema de gerenciamento de banco de dados paralelos (SGBDP)

Projeto de Bases de Dados Distribuídas

Projeto Ascendente

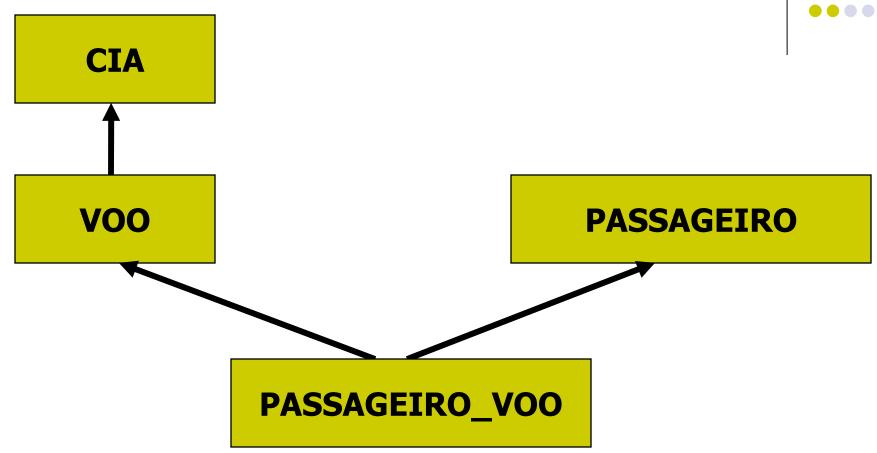
Envolve a integração de bases existentes

Projeto Descendente

- Distribuição das entidades globais sobre os nós do sistema distribuído
- Realizado em duas fases:
 - Fragmentação
 - Alocação

Projeto Descendente de BDDs

- Fragmentação
 - Fragmentação Horizontal (Seleção σ)
 - Primária (FHP)
 - Derivada (FHD)
 - Fragmentação Vertical (FV) (Projeção π)
 - Fragmentação Híbrida


O que considerar?

- Informações de acesso
 - Freqüência dos acessos
 - Tipos de acessos
- Informações da base de dados
 - Relacionamentos
 - Cardinalidade
 - Tipo dos campos
 - Tamanho dos campos

Base de Dados Relacional a ser fragmentada

Cia

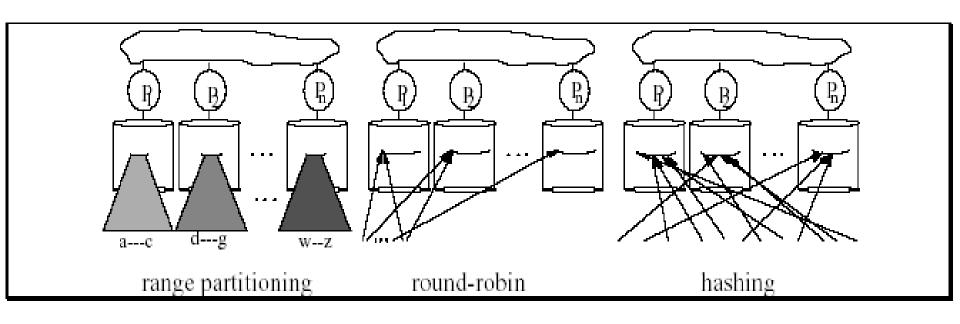
Codigo	Nome	Faturamento	Presid.	Sede
BRA71	BRA	50000K	Aribostono	Ter. da França
Varig51	Varig	20000K	Juvenal	Porto Alegre
AirFr55	Air France	10000K	Etoile	Biarritiz

Passageiro

I didded golf o			
Codigo	NOME	DATANASC	TELEFONE
P1	Helder	31/8/1978	322-9999
P2	Antonio	18/12/1985	222-3353
P3	Jabes	3/7/1969	222-3733
P4	Amorim	17/1/1966	7222-3333
P5	Arthur	23/5/1983	9878-7434
P6	Chico	28/2/1977	7778-7434

Moo

V00			
Codigo	Tarifa	Assentos	Cia
AirFrance147	1000	250	AirFr55
AirFrance132	455	160	AirFr55
Varig224	500	150	Varig51
BRA666	150	250	BRA71


Passageiro_Voo

rassagello_voo	
Cod_Pas	Cod_Vcc
P1	Varig224
P4	BRA666
P6	BRA666
P3	AirFrance132

1. Fragmentação Horizontal Primária

- Corte horizontal nas coleções, criando subconjuntos dos registros (tuplas) da coleção original

- Principais Técnicas
 - Faixa de Valores (range partitioning)
 - Circular (round-robin)
 - Função Hash

1. Fragmentação Horizontal Derivada

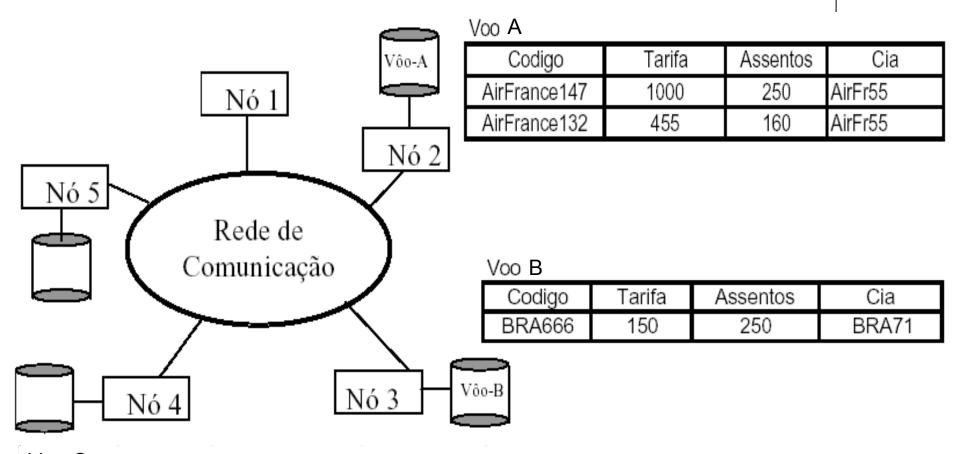
- Fragmentação de uma coleção não é baseada nas propriedades dos seus próprios atributos mas em função da frag. horizontal primária de outra coleção.
- Usada para facilitar as operações de junção e navegação entre fragmentos
- A tabela de Voo pode ser fragmentada de modo derivado em relação à tabela de Cia (Cia. Aérea)

1. Fragmentação Horizontal Derivada

 Definição nos relacionamentos de "Owner-Member"

Ex.: "Owner" = Cia – FH Primária "Member" = Voo – FH Derivada

Cia


Codigo	Nome	Faturamento	Presid.	Sede
AirFr55	Air France	10000K	Etoile	Biarritiz

Voo

Codigo	Tarifa	Assentos	Cia
AirFrance147	1000	250	AirFr55
AirFrance132	455	160	AirFr55

\ <i>\</i>	\sim	\boldsymbol{C}
V	OO	U
-		_

Codigo	Tarifa	Assentos	Cia
Varig224	500	150	Varig51

2. Fragmentação Vertical

- Corte vertical nas coleções, criando subconjuntos de atributos da coleção original
- Chave da relação presente em todos os fragmentos
- Afinidade dos atributos
- DW IBGE

2. Fragmentação Vertical

1000		186
Sec. 18.	110000	476
	200	- 64
No. 15	100	-

Codigo	Presid.	Sede
BRA71	Aribostono	Ter. da França
Varig51	Juvenal	Porto Alegre
AirFr55	Etoile	Biarritiz

Cia-B

COTOL EX		
Codigo	Nome	Faturamento
BRA71	BRA	50000K
Varig51	Varig	20000K
AirFr55	Air France	10000K

Passageiro-A

Codigo	NOME	TELEFONE
P1	Helder	322-9999
P2	Antonio	222-3353
P3	Jabes	222-3733
P4	Amorim	7222-3333
P5	Arthur	9878-7434
P6	Chico	7778-7434

Passageiro-B

i doodgene b		
Codigo	DATANASC	
P1	31/08/78	
P2	18/12/85	
P3	03/07/69	
P4	17/01/66	
P5	23/05/83	
P6	28/02/77	

Voo-A

Codigo	Assentos	Cia
AirFrance147	250	AirFr55
AirFrance132	160	AirFr55
Varig224	150	Varig51
BRA666	250	BRA71

Voo-B

Codigo	Tarifa
AirFrance147	1000
AirFrance132	455
Varig224	500
BRA666	150

3. Fragmentação Híbrida

 Aplicação de ambas as técnicas sobre uma coleção da base de dados

Projeto Descendente de BDDs

Alocação

- Cada fragmento pode ser:
 - replicado
 - Único
- Custo Mínimo x Melhor Desempenho
- Fatores Influenciadores:
 - Custo de Processamento
 - Quantidade de acessos
 - Tipos de acessos
 - Custo de transmissão
 - Custo de armazenamento

Processamento Distribuído de Consultas

- Traduz automaticamente uma consulta expressa em linguagem de alto nível sobre uma base distribuída que é vista como única pelo usuário
 - A tradução deve ser correta.
 - O plano gerado deve ser ótimo
- O processamento trabalha em quatro fases:
 - a decomposição da consulta
 - a localização dos dados
 - a otimização global
 - a otimização local

Processamento Distribuído de Consultas

- Transforma uma consulta algébrica em uma consulta equivalente sobre uma base fragmentada.
- É analisado o predicado da consulta (conjunto de condições impostas pela consulta)
- É avaliada a geração de fragmentos vazios
- A consulta pode ser reduzida

Processamento Distribuído de Consultas SELECT CODIGO, TARIFA FROM VOO WHERE CIA="AIRFR55"

Transforma a consulta em consulta equivalente sobre a base fragmentada:

SELECT CODIGO, TARIFA FROM VOO -A
WHERE CIA = "AIRFR55"

UNION

SELECT CODIGO, TARIFA FROM VOO -B
WHERE CIA = "AIRFR55"
UNION

SELECT CODIGO, TARIFA FROM VOO -C WHERE CIA = "AIRFR55"

- São confrontados o predicado da consulta e a fragmentação existente
- É avaliada a geração de fragmentos vazios
- A consulta pode então ser reduzida:

SELECT CODIGO, TARIFA FROM VOO -A
WHERE CIA = "AIRFR55"

Processamento Distribuído de Consultas π codigo, tarifa **O** CIA = "AIRFR55" Voo π codigo, tarifa π codigo, tarifa π codigo, tarifa \circ CIA = "AIRFR55" O CIA = "AIRFR55" O CIA = "AIRFR55" Voo-A Voo-C Voo-B

Controle de Concorrência Distribuído

 Procura buscar um equilíbrio adequado entre a manutenção da consistência e o alto nível de concorrência.

• Problemas :

- Gerência de cópias múltiplas.
- Falhas locais em nós.
- Falha nas ligações de comunicação.
- Finalização ('commit') distribuída.

Problemas em aberto

Processamento Distribuído de Consultas

- Nº de soluções pode ser muito grande
- Avaliação custo otimização X custo execução
- Mudanças na distribuição dos dados (desbalanceamento)

Problemas no Crescimento da Rede

- Modelos ainda simplificados, estudos sem grande detalhamento
- Processamento Distribuído de Transações
 - Dificuldade de manutenção da consistência das réplicas
- Integração com Sist. Operacionais Distribuídos
 - SGBD e SBDD não são simples aplicações

O que está disponível hoje no mercado?

- Oracle 9i
 - Fragmentação horizontal primária de tabelas e índices
 - Hash e faixa de valores
 - Transparência na manipulação dos dados
 - Real Application Cluster
- SQL Server 2000
 - Fragmentação horizontal primária
 - Redução de fragmentos ainda limitada
- IBM Informix Dynamic Server
 - Fragmentação horizontal primária
 - IBM Informix Extended Parallel Server
- PostGresql
 - grids

Questões atuais

- SGBDs OO e OR
 - Indicação das técnicas de fragmentação mais apropriadas com novas heurísticas
- Gerência de dados na Web
 - Interoperabilidade XML
 - Mudanças de tecnologia: Arquiteturas multi-camadas, serviços web, desenvolvimento baseado em componentes distribuídos
 - Novas aplicações inerentemente distribuídas
- DataGrids
 - VecPar

Bibliografia resumida

- Özsu, M.T. Valduriez, P. "Principles of Distributed Database Systems", 3a edição, Prentice Hall
- Elmasri, R. Navathe, S. "Fundamentals of Database Systems", 3a edição, Pearson
- Ceri, S. Pelagatti, G. "Distributed Database Systems -Principles and Systems", McGraw Hill
- Baião, F., Mattoso, M., Zaverucha, G., "A Distribution Design Methodology for Object DBMS", *International Journal of Distributed and Parallel Databases*, Kluwer Academic Publishers 16, 2004, pp. 1-46
- Perguntas ???