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Abstract—Database replication has been a constantly 

discussed and studied topic. Replication is a fundamental factor 

that comply the companies’ needs that leads with relevant 

information. Applying database replication in a right way with 

well-defined interfaces guarantees that high availability, 

performance and connectivity are maximized. When we design a 

replication database environment, group communication and 

fault tolerance are important aspects that must be considered so 

that DBMS features are sustained, such as consistency, integrity, 

security and others. This paper presents an approach to apply 

and adaptable replication in a DBMS. This means that a 

database should support different replication strategies and 

allow, at runtime, that the strategy adopted could be changed. 

For each scenario or specific system situation (either an 

enterprise environment or a shared cloud), replica nodes provide 

an interface that enables to adjust the way that replication is 

done – adapting to the needs of certain instant. 

 

Keywords—Database, fault tolerance, group communication, 

replication. 

 

Resumo—Replicação em Sistemas de Gerenciamento de Banco 

de Dados (SGBD) tem sido um tópico cada vez mais discutido e 

estudado. A replicação é o fator primordial para atender as 

necessidades das empresas que lidam com informações relevantes. 

Aplicar a replicação em banco de dados de forma correta com 

interfaces claras e bem definidas garante que a alta 

disponibilidade, desempenho e conectividade sejam maximizados. 

Projetar um ambiente de banco de dados replicável requer que 

aspectos como comunicação em grupo e tolerância a falhas sejam 

considerados de modo que as características do SGBD sejam 

mantidas, tais como consistência, integridade, segurança, dentre 

outros. Este artigo apresenta uma abordagem para aplicar 

replicação adaptável em um SGBD. Isto significa que um banco de 

dados deve suportar diferentes estratégias de replicação e permitir, 

em tempo de execução, que a estratégia adotada seja alterada. Para 

cada cenário ou situação específica do sistema (seja em um 

ambiente corporativo ou em uma nuvem compartilhada), os nós 

das réplicas fornecem uma interface que possibilita ajustar a forma 

como é feita a replicação, se adaptando às necessidades 

momentâneas. 
 

Palavras-chave—Banco de dados, tolerância a falhas, 

comunicação em grupo, replicação. 
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I. INTRODUCTION 

N increasingly valuable element to people and 

organizations around the world is information. 

Modern society has been living over 

information era, where data must be constantly present, 

handled and processed as fast as possible [1]. 

Information is becoming so important today, mainly in 

business, that a slight failure in data access may cause a 

huge problem. For instance, if a telecommunication 

platform enters in bypass mode (because the 

environment is unavailable) or a bank system goes 

down, the company will most likely suffer a 

considerable loss of revenue due to data unavailability. 

If a database that stores all data of a company goes 

down, critical information can be lost or become 

inaccessible so it cause significant damage. In order to 

deal with data unavailability and its consequence and 

also to overcome the potential problems caused by 

centralized DBMS (Database Management System) 

approach, we use data replication approach. Such 

approach is discussed in Section II. 

Database replication has been a frequent feature in 

DBMS scope for the last years. In this context, each 

database is autonomous, allowing tuning for the best fit 

configuration to a specific scenario, as well as 

increasing the performance of each individual DBMS 

replica according to their needs. 

Furthermore, the modularity is another important 

aspect that must be considered. Using database 

replication, it is possible to create well-defined 

interfaces that connect several flavors of database and 

can, moreover, make use of different types of replication 

protocols. To reach these goals, it is necessary to 

provide: (a) a "friendly" well-defined replication 

interfaces; (b) group communication support; and (c) 

"pluggable" (or connectable) replication protocol. In 

other words, they can be replaced in the architecture 

seamlessly without large impacts [2]. 

It is possible to achieve a suitable architecture for 

DBMS replication joining these three requirements. 

Well-defined interfaces and "pluggable" protocols, 

allows attains the modularity and flexibility. On the 

other hand, it is possible to obtain reliable delivery of 

messages to all system replicas through the adoption of 

a mature group communication protocol. 

Fault tolerance and the group communication 

techniques are intimately linked and give the 

foundations to replication. Database replication has been 

constantly debated as an efficient way to increase high 

availability and performance on data retrieval. Given a 

replicable database environment it is possible that each 

DBMS has its own configurations and tunings, though 

information is always consistent throughout the system 

nodes. 

The advent of cloud computing [3] and its fast 

growth is transforming the information technology 

industry. Many companies are considering convenient to 

host their DBMS to the cloud letting to it the duty of 

data management, including all required resources to 

accomplish the desired performance with high 

availability. It is also important that each replica node 

interact harmonically with the cloud or even more: 

provide effortless mechanisms to reach the best 

performance. 

An extremely useful mechanism to the cloud might 

be the support of different replication strategies in the 

same database. Aligned with this, allows changing these 

replication strategies dynamically (at runtime) with no 

additional builds (compilations), makes the environment 

adaptable and save costs to the cloud hosting and 

customers. 

Therefore, it is essential to study and develop new 

techniques driven to the practice of replication in 

databases in order to achieve the desired high 

availability and performance of distributed enterprise 

systems. 

 

A. Objectives 

The purpose of this project is to develop a general 

middleware that can be attached to a DBMS in order to 

replicate database operations through different replicas 

located in several sites. This middleware is based on 

group communication protocol to allow total order 

delivery [4] of SQL instructions to all replica nodes. 

Additionally, two replication strategies are 

implemented into the same database in order to make a 

comparison of both methods immersed in the same 

environment. The main idea is to have a database able to 

support both active and passive replication techniques. 

This becomes an advantage, since we can adapt 

A 
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replication strategy to be used according to a desired 

service level, once that most of the DBMS support just 

one strategy for replication. 

Finally, a performance evaluation of both replication 

implementations is done. The contribution of this paper 

is therefore the valuable capability of switching 

replication strategy at execution time. Thus, depending 

on the environment behavior, the database can behave 

differently in order to enhance performance and save so 

much effort and resources. 

 

B. Paper structure 

The rest of this paper is organized as follows. Section 

II gives a background discussion concerned on the main 

topics related. This section identifies the reasons of 

using distributed and replicable databases, 

distinguishing them from centralized method. It also 

presents how replication is related to distributed 

computing fundamentals, addressing to fault tolerance 

and group communication – mighty important and 

applied on replication strategies. 

Section III clarifies the essential notions of database 

replication strategies to understand how they work. It is 

noteworthy to point out these concepts so as it gives 

foundation in understanding further the implementation 

and benchmarking comparison of both active and 

passive methods. 

Section IV presents the development infrastructure. It 

shows the DBMS used throughout the project (H2DB) 

and the group communication toolkit adopted (JGroups). 

The implementation details as well as each part of 

the generic architecture for database replication are 

described in Section V.  

Section VI evaluates the replication environment 

with a benchmarking approach widely used: TPC-C. It 

also discusses a comparison of both replication 

strategies and the centralized mode (database with no 

replication) and shows the results drawn during the tests. 

Finally, Section VII summarizes the entire project 

and draws a conclusion reached on this paper as well as 

a discussion of future directions. 

 

II. BACKGROUND 

This section surveys the most important concepts of 

database environment to contextualize replication 

database as well as the main related subjects in this area, 

such as fault tolerance and group communication. 

 

A. Database environment: An overview of 

centralized and distributed DBMS 

The primary and necessary tool for the storage of 

relevant information in a corporation is a database. 

Regarding relational database it is important to ensure 

the data consistency. Thus, there are some concerns such 

as independence, control and data integration, treatment 

of redundant information, and others, which are featured 

in a database management system. All these features can 

be wrapped into a single centralized DBMS, as well as 

in many geographically distributed servers. 

Since database has several important features, it is 

appropriate to host the DBMS on a dedicated server and 

let it always available to users, as well as all external 

systems that access the database. The DBMS presents 

significant advantages of security primitives and severe 

restrictions to their access. There are some drawbacks 

when it is used in a single centralized environment, 

though. In this case, if there is an interruption in the host 

server, or even a failure in the software itself, the DBMS 

will be unavailable. Thus, all users and systems that 

need database will be, inexorably, blocked from 

accessing any information - until the failure be remedied 

and the database back to normal operation. 

On the other hand, the idea of distributing data 

geographically appears in objection to leave them in a 

single centralized server. In this direction, all data will 

be scattered throughout the distributed network, each 

one with their own storage devices. Thus, the storage 

devices are not attached to a common processing unit 

such a CPU and can exchange messages through 

networked computers [5]. 

It should also have transparency in information 

access, that is, it is not required from users – when they 

perform a query or manipulate data – a prior knowledge 

of where all the necessary data are specifically stored. 

The customer just performs a query and data is returned, 

regardless of whether the query was requested on the 

machine/server where the data was persisted. It might be 
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extremely complex to make possible this distribution 

and transparency location of information. To perform 

this role easier, there is already an approach called 

Distributed Database Management System, or simply 

Distributed DBMS. Elmasri and Navathe [6] define a 

distributed database as a collection of multiple databases 

logically interrelated and distributed across a computer 

network.  

In spite of the fact that it presents more complexity 

and requires a higher cost of implementation, distributed 

DBMS ensures fairly data availability and modularity, 

when compared with centralized DBMS. Even though 

distributed DBMS brings up a good alternative to keep 

the data more available for users than centralized 

databases, it still has some shortcomings.  

When one or more servers fails, some information, 

which was stored in one of these faulty servers, may be 

inaccessible. Additionally, the availability – in some 

cases – can be affected when, for example, a query is 

performed with significant joins of geographically 

distant data. For instance, if the query contains three 

joins within three tables (hosted in different places), it 

will have a performance decrease owing to the huge 

flow of sending messages to change information 

between the servers.  

As seen, distributed DBMS still has some 

unsatisfactory flaws when high availability and 

performance are required indeed. For these reasons, it is 

necessary – in robust systems that require a high 

availability of data – the usage of multiple identical 

DBMS that communicate each other harmonically in 

order to maintain the consistency and integrity without 

loss of availability. This approach is known as replicated 

database and is described next.  

 

B. Replicated Databases 

One of the approaches adopted to increase the 

availability of a system/database keeping natural 

attributes (such as consistency, integrity, security, etc.) 

is named replication. The aim of replication is to provide 

the combinations of high availability, high integrity, 

scalability and, in some cases, enhance the performance 

of both systems and database. This is achieved due to 

the creation of multiple copies of a possibly mutating 

data object, such as a file, a database, or other kind of 

data source [8]. Replication therefore provides effective 

ways to increase availability and improve fault tolerance 

in distributed systems. 

In order to accomplish a replication environment in a 

set of database there must be redundancy of information 

among all nodes (replicas) within the environment. 

According to Junior-Alfranio [7], “redundancy is a key 

element to provide fault-tolerant applications with 

increased performance”. Namely, it is possible to 

enhance performance and avoid failures on robust 

systems using redundancy. 

The strategy adopted to take place redundancy in 

practice is replication. Replication can be implemented 

in database systems by two or more DBMSs that 

provide the same schema and data and are able to 

communicate each other through the network. Thus, 

replication is considered as a method to perform data 

duplication.  

In a replication database environment, several 

replicas are needed so that high availability and integrity 

can be achieved. Also, the use of several replicas 

enables to deal with a number of independent failures. 

Hence, each DBMS may have their particular 

configuration of hardware and software, even though all 

of them store the same data item. 

As stated by Renesse [8], in order to achieve high 

performance it is necessary to use a sufficient number of 

replicas so that it is possible to meet the load imposed 

on replicated objects. That is, depending on the business 

needs, the more data availability desired, more replicas 

can be included within the environment. 

There are two models of database replication that 

might be applied in a production environment: 1) 

primary backup and 2) update anywhere. Each of these 

two models holds their own advantages and challenges 

depending on the environment where they can be 

applied [9]. 

The first requires a master node for the entire 

replication environment. This master node is responsible 

for receiving requests from any sources and replicate 

transactions to other nodes in the network. The 

remaining replicas of the environment, therefore, are 

read-only. When a node needs an update, it requests the 

master to perform the update process. All updates 

emanate from a master copy of the object. As shown in 
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Figure 1 (a), clients communicate with the master copy 

and this one takes care of updating the others. 

On the other hand, the update anywhere model 

enables that any node in the environment process a 

request from the client and update a data item. The other 

copies are updated by the node which received that 

particular request with the update transaction. Because 

there is no master, replicas can communicate with any 

node in the environment. In this case, updates may 

emanate from anywhere, namely, clients can 

communicate with any node. This model is illustrated in 

Figure 1 (b). 

 

 

Figure 1.Models of Replication: a) Primary-backup;  b) Update anywhere 

 

As a result, the replication database has some 

advantages over a purely distributed database with no 

replication. Some of these advantages are listed as 

follows: 

 

 Increasing data availability, as any data can be 

accessed in different places; 

 

 Increasing reliability, since data can be accessed 

even when there is unavailability of one node; 

 

 Reducing network traffic at peak times, since 

replication can be scheduled to happen at specific 

times with less traffic of data; 

 

 Improving response time for search and data 

aggregation; 

 

 Transparency in redundancy of information and to 

clients’ accesses. 

 

Some relational database management systems 

(RDBMS) offered by renowned companies have already 

native replication support, for example, Oracle 

Replication [10] and SQL Server Replication [11]. 

Nevertheless, the replication model is strictly closed and 

hard to change and adapt to business needs. The 

customers and developers become hostage to its closed 

technology and protocols used by information sharing 

and group communication. On the other hand, when 

developers build their own replication methods, they 

gain freedom and autonomy to optimize their resources 

as well as approach it from the customer’s needs (such 

as performance and security) in a convenient way. 

It is possible to implement decentralized 

applications, optimize performance through load balance 

or even direct the request to be processed into a 

geographically closest server from the client. 

 

C. Fault Tolerance 

To achieve availability and prevent disasters arising 

from the loss of important information or valuable data, 

it is necessary to apply mechanisms to tolerate system 
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failures. These failures may have several causes and 

could be managed by software fault tolerance or 

hardware fault tolerance. While the software fault 

tolerance looks after software failures, hardware fault 

tolerance usually comes from hardware issues and is 

mostly discussed by the electrical engineering 

community [12]. Availability and reliability of 

information are both related and are included as part of 

the strategy for fault tolerance. The fault tolerance 

mentioned in this paper concerns on crash failures, since 

the most proposed techniques of replicable 

environments leads with this failure type. 

The basic goal of fault tolerance is to fulfill the 

dependability aspects [12]. This seeks to enhance the 

safety and quality of service offered by the system, 

increasing its reliability, enlarging its availability and 

facilitating maintainability (among others, as shown in 

Figure 2 [12]). In other words, the system should behave 

as desirable avoiding potential failures and, additionally, 

increase the time which it is available to provide 

services to clients (either users or other systems).  

In order to avoid absence or loss of information, it is 

required that the system stay always available. 

Availability is one of the attributes of dependability, as 

illustrated in Figure 2, and it is not cheap to achieve a 

high availability. 

 

 

Figure 2. Dependability and security attributes (A. 

Avizienis, et al, 2004 [12], p.14) 

 

There are many different terminologies found in the 

literature to refer the high availability [13]. A system 

can be featured as high available if it was designed and 

built with a sufficient number of components of 

hardware and software to assure its functionality. 

Furthermore, it must have enough redundancy in the 

components to prevent predetermined failures. 

To implement and maintain redundancy of 

information, replication methods are used so that part of 

dependability (availability) can be achieved.  

Dependability supports availability and this last one 

contains redundancy. Furthermore replication is used to 

duplicate the data, maintain redundancy and achieve the 

highest level of availability and dependability. 

Redundancy strategy is used in traditional high 

availability platforms. If a system requires high 

availability and, consequently, it implies on redundant 

information, the replication of data becomes mandatory. 

To do so it is recommended to handle a set of databases 

which have duplicate data and apply the replication 

mechanism. Thus, this set of databases will form 

distributed and replicated databases which provide high 

availability. If one database replica fails in the 

distributed system, the other replicas may be able to 

operate and offer the information, since they have the 

same data as the first one that failed. Therefore, the 

failure of a site does not necessarily imply the shutdown 

of the entire system. 

 

D. Group Communication 

In the context of distributed systems, it is important 

to have an effective communication among the involved 

processes. For communication occur, there must be a 

communication channel (typically the network) that 

enables computers (processes) exchange messages with 

each other. There is an abstraction to perform this 

communication mechanism as known as group 

communication (GC). Group communication is used by 

most distributed applications, especially for the 

replicated database systems, since the replicas 

(considered processes or nodes) are constantly changing 

messages such as transactions and data updating. The 

GC might be considered as a middleware between the 

layer which implements replication and the transport 

layer, as shown in Figure 3 [14]. 

 

 

Figure 3. Group communication [14] 

 

Group communication abstraction aims to solve basic 

problems of inconsistencies in communication among 

distributed processes that cooperates to perform the 

execution of some task. Thus, a group is basically a set 
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of processes that cooperate each other to achieve a 

common goal. A group is also identified by a name so 

that messages can be sent to all members referencing the 

group identifier. Thus, the abstraction of GC is aware of 

the group members and delivers the message to all 

active processes (members) [14]. 

The communication among processes forming a 

group is accomplished through a mechanism called 

diffusion - a message to be transmitted is sent to all 

members belonging to the group. An important property 

of the diffusion process performed by group 

communication is atomicity. In general, group 

communication protocols ensure that a message, once 

delivered to a particular group process, is also delivered 

to all other processes running in the same group 

(atomicity), even if the process that originated the 

message fails before finalizing the transmission. 

Another property, generally secured by GC 

abstraction, is the total order in which messages are 

delivered to different processes (total order). A total 

order protocol delivers messages in the same order for 

all processes in a group. For instance, the GC protocols 

aid in synchronize all the transactions and execute them 

inside each replica in the right sequence. This property 

has a profound importance for database replication 

environment, as it is required the isolation of each 

transaction performed by DBMS. 

Using multicast communication, messages can be 

sent exactly to the group of machines that are interested 

in receiving the message. Thus, apart from getting ease 

the implementation of other abstractions, group 

communication service has also been held as a basic tool 

to programme general distributed applications. It eases 

the implementation of replication protocols by providing 

abstractions for message reliability, ordering and failure 

detection [2]. 

There are some different implemented abstractions 

for group communication provided by developers’ 

community. The toolkit used in this project is described 

in section IV. 

 

III. DATABASE REPLICATION TECHNIQUES 

Prior sections discuss the key points concerned to 

database replication environment and how they are 

related. Developers can create a replicable database 

environment applying the concepts of redundancy and 

fault tolerance working together with group 

communication techniques. 

When data is replicated, atomicity and isolation need 

to be guaranteed. For atomicity there is no much 

problem, since it can be guaranteed by using 2 Phase 

Commit [15]. The challenge, however, is to ensure that 

serialization orders are the same at all sites. In other 

words, it is primordial to guarantee that all nodes 

execute the same operations exactly in the same order; 

otherwise the copies would be inconsistent. 

Some techniques have been proposed in managing 

replicated data. An efficient and effective replication 

technique is decisive to improve both the availability 

and performance. Thus, data and transactions can be 

replicated aimed at failures recovery. 

Replication can be classified according to the means 

that a set of replicas receives and processes requests 

from a client [16]. This section analysis the most 

common techniques used to replicate databases and 

compare each other: active replication versus passive 

replication. It gives therefore the understanding of 

implemented replication (discussed in next sections) and 

the comparative tests performed in both strategies that 

can be switched at runtime. 

 

A. Active Replication 

The active replication, found sometimes in the 

literature as state-machine approach [7] [16], is a heavy 

replication mechanism which receives the requests from 

a client and send to all replicas to process in the same 

deterministic way, namely, all replicas updates the 

instructions in the same order. Then, the replica that 

received the client request sends back the response to 

the client. 

This technique allows any node to update any local 

data, so it is based on Update-Everywhere replication 

model – as shown in Figure 1 (b).  The front end (which 

could be one node that receives the request) sends the 

requests as a multicast message to the group of 

replication manager. All replication managers (hosted in 

each node) process the request independently, though it 

is done in an identical way. Supposing that a replica 

manager fails by crash, the service still works since the 

other replica managers can process and reply the 

requests naturally [16].  

In this technique, a read operation is allowed to read 

any copy of data. Meanwhile, a write operation is 
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required to write all copies of data. Even though this 

seems to be a great and elegant technique, it has a 

significant drawback that affects the whole system due 

to the high resource usage: performance. In this case, the 

replica managers demand high consumption of 

resources, since all nodes need to execute the same 

transaction before send the response to the client. It 

reduces update performance and increases the 

transactions response time [16]. 

On the other hand, according to [16], the main 

advantage of active replication is its simplicity (e.g., 

same code everywhere) and the failure transparency in 

view of the fact that they are fully hidden from the 

clients. Besides that, active replication keeps all sites 

exactly synchronized by updating all the nodes as part of 

one atomic transaction. 

 

B. Passive Replication 

One of the most popular replication techniques is 

passive replication, also called Primary-backup 

technique. In this technique one of the replicas is 

designated primary. Generally, the designation of the 

primary replica is accomplished according to the node 

that has not crashed and that has the lowest identifier. 

The remaining nodes are called backups. 

The front end (which could be one node that receives 

the request) communicates only with the primary replica 

manager. This executes the operations and sends the 

resulting state updates to each of the replicas (including 

itself), which, passively, apply the state updates in the 

order received. Thus, this technique is based on 

Primary-backup model shown in Figure 1 (a). The 

primary replica receives the requests from a client, 

processes them, and replies back to the client. Changes 

gathered in the execution are propagated to other 

replicas (backup) either in a lazy or eager approach [7]. 

In passive replication it is not necessary that 

operations be deterministic – the main disadvantage of 

active replication. Typically, the primary will resolve 

non-determinism and produce state updates, which are 

deterministic. If the primary fails, the client determines 

one backup to be promoted as the new primary to whom 

it retransmits its update. 

Figure 4 shows the different ways that passive and 
active replication works on data propagation. Passive 
replication asynchronously propagates replica updates to 
other nodes after the updating transaction commits.  
Because it is faster, some systems that need to improve 

response time use passive replication, instead of active 
replication.  

 

 

Figure 4. Data propagation: a) Passive replication; b) 

active replication 

 

The example of Figure 4 shows an environment 

composed by 3 replica nodes that receives 3 operations: 

1. Write a; 2. Write b; and 3. Commit. In passive 

replication, the Node 1 updates the whole transaction 

and then sends the operation to other nodes. Active 

replication updates all nodes for each operation, thus the 

replicas are always updated. 

In contrast to the active replication, in passive 

replication there is no transparency to the clients when 

failures happen. It is necessary to guarantee that updates 

sent by the new and the faulty primary are received and 

applied in the same order in all replicas.  

 

IV. DEVELOPMENT INFRASTRUCTURE 

This section discusses development infrastructure 

used to implement the database replicable environment. 

First it presents the database used and shows the reasons 

of why this has been chosen. Secondly, the group 

communication toolkit is presented. 

 

A. DBMS – H2Database 

The simulation was implemented in H2 database 

which is a relational database management system 

written in Java and distributed under an open source 

license. It is a lightweight database which is shipped 

with JBoss AS (JBoss Application Server 7) [17] 

distribution and other reasonable important projects such 
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as nWire
1
. It is also already supported by object-

relational mapping (ORM) tools, for instance Apache 

OpenJPA and Hibernate ORM.  

Because it is an open source lightweight database and 

it is written in a high level object oriented language 

(Java), H2DB becomes a convenient choice for 

developers to build and test applications with more 

efficiency and advanced configuration. 

Figure 5 was drawn based on some benchmarks 

accomplished by H2 team [18].  

 

 

Figure 5. Sample client-server performance comparison of 

H2DB to other database engines. Reprinted from [18] 

 

As it can be seen in Figure 5 H2 database overtops 

performance in many cases when compared to other 

similar open source databases. Besides its speed, there 

are other meaningful reasons to use H2DB.There are 

two different ways that H2DB can be used in, as 

follows:  

 

1. Running in a server as a client-server mode 

(traditional way); and 

 

2. Embedded in Java applications where data will 

not be persisted on the disk, just in memory. This 

mode is generally used in games or huge 

frameworks like JBoss AS that comes with a 

H2DB configured as in-memory database. 

 

Thus, if it is necessary to get the best from H2 

database it is appropriated to use a server mode database 

 

1nWire – Software Visualization Tool. Available at: 

http://www.nwiresoftware.com 

– which in fact exposes advanced features, for instance, 

exposes TCP/IP socket for other processes. 

On the other hand, the embedded mode is practical 

and gives to developer the flexibility to install the 

software in a portable device or even share the database 

on a cloud environment. 

As it is an open source project, it is also supported by 

open source community. H2DB is lightning fast for 

small to midsized databases so as it is suitable for the 

proposed project of replication. In addition, traditional 

open source databases such as MySQL and PostgreSQL 

also provide replication mechanisms already 

implemented. 

Despite all these advantages, H2DB has its 

undesirable features as follows: 

 

i. Code maturity: compared to the large databases 

such as Oracle, IBM DB 2, MS SQL Server, 

MySQL, PostgreSQL, the Java databases are 

relatively new and therefore not so stable. 

 

ii. Commercial support: even though H2 database 

has a commercial support, it is not so wide and 

easy if compared to more renowned database. 

 

In spite of that, H2DB remains advantageous to 

implement the replicable environment and comparative 

tests. Even though it is not recommended for large 

companies, it can be attractive useful for both 

development and test due to its flexible configuration. 

Table 1 presents a comparison among H2DB, Derby, 

MySQL and PostgreSQL database. Indeed, Table 1 

points out some differences in features of these DBMSs. 

 

Feature H2DB Derby MySQL 
Postgre 

SQL 

Embedded 

Mode 
Yes Yes No No 

In-Memory 

Mode 
Yes Yes No No 

Encrypted 

Database 
Yes Yes No No 

ODBC  

Driver 
Yes No Yes Yes 

Sequences Yes Yes No Yes 
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CLOB/BLOB 

Compression 
Yes No No Yes 

Pure Java Yes Yes No No 

Footprint 

(jar/dll size) 

~1.5 

MB 

~3.0 

MB 

~4.0 

MB 

~6.0 

MB 

Table 1. Comparison of H2DB to other database engines. 

Addapted from [18] 

 

As illustrated in Table 1, H2DB competes tightly 

with other well-known concurrent DBMSs and takes 

advantages in many cases. For instance, H2 database 

supports encryption, affords an additional feature to run 

just in-memory and can be embedded within 

applications. These features, however, are not supported 

by MySQL and PostgreSQL. Additionally, Derby 

database lacks an ODBC Driver and does not have 

support for large objects such as BLOB and CLOB – 

features supported in H2 database.  

 

B. Group communication – JGroups 

Group communication mechanism aids the 

development of distributed systems over a network. As 

we need to implement a replicable environment in a 

database system connected by network, we use the 

JGroups [19] toolkit for reliable messaging. It is 

necessary to implement replicas (known as nodes) 

which must be capable to exchange messages so that 

they can be always updated. JGroups is based on IP 

multicast and can aid us to create groups whose nodes 

can send messages to each other.  

This project was implemented under Java platform so 

that we can take advantage of JGroups, since it is also 

written entirely in Java. Its main features include [19]: 

 

 Group creation and deletion: it is possible to 

create a group with an identifier that contains all 

replica instances. 

 

 Joining and leaving of nodes in the group: 

replicas can be added into groups at runtime, with 

minimum effort. 

 

 Membership detection and notification about 

joined/left/crashed group nodes: when one replica 

crashes, it may rejoin the group and the others can 

send the transactions executed during this absent 

period. 

 

 Detection and removal of crashed nodes. 

 

 Sending and receiving of node-to-group reliable 

messages (point-to-multipoint): one replica can 

send its data item to the group so all the others 

replicas can update it. 

 

 Sending and receiving of node-to-node reliable 

messages (point-to-point): one replica can send 

the updates to another past crashed replica that 

rejoined the group. In this case, the recovery 

process of one replica is performed. 

 

As seen, JGroups is considered an important 

component of the environment that implements all the 

communications features through the networked 

computers. Therefore it fits perfectly with our needs to 

assure the reliable messaging among replica instances. 

 

V. SIMULATION-BASED APPROACH 

This section shows the architecture model to 

implement database replication. Further it is described 

the essential elements of the replication architecture and 

how they are implemented and coupled inside H2 

database. 

 

A. Architecture Model for Implementation 

 The implementation was based on the replication 

architecture model for database suggested in [2]. 

Therefore, it is important to realize the main concepts of 

this architecture to understand the implementation.  

 This architecture model is essentially composed of 

seven elements, though three of them are indeed the core 

of replication. Figure 6 illustrates the model for 

replication architecture: 
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Figure 6. Replication architecture model. Adapted from [2] 

 

The architecture shown in Figure 6 is based on [2] 

and consists of the following blocks: 

 

 The Application, which might be the client tier 

and sends requests to database. 

 

 The Driver which affords a standard interface for 

the Application tier. The Driver should provide 

remote accesses to the database using a low-level 

mechanism that ease the communication between 

client (application) and server (database). 

 

 The Load Balancer dispatches client requests to 

database replicas using a suitable load-balancer 

algorithm. Although it is an important component, 

the Load Balancer is needless to apply the 

replication, namely, we can implement replication 

without the Load Balancer. However, it improves 

the system performance. 

 

 The DBMS, which holds the database content 

and handles remote requests to query and modify 

data expressed in standard SQL.  

 

 The Reflector is attached to each DBMS and 

allows inspection and modification of on-going 

transaction processing. 

 

 The Replicator mediates the coordination among 

multiple reflectors in order to enforce the desired 

consistency criteria on the replicated database. 

This component uses the group communication 

mechanism to exchange messages among 

replicas. 

 

 The Group Communication supports the 

communication and coordination of local 

Replicators. 

 

The last 3 blocks are the key components which 

works together to achieve the replication. Thus, this 

project focuses specifically on these three components 

in order to implement a basic database replication 

environment. 

Essential components of the architecture are the 

interfaces among the building blocks, which allow them 

to be reused in different contexts or easily switched to 

other implementation. This minimizes the coupling and 

enhances the system cohesion as well as its modularity.  

In order to reach modularity without losing 

performance, it is imperative that the system has 

replication support from the database engine. The client 

interfaces provided by a DBMS do not afford enough 

information for replication protocols. The replication 

protocols must know details about the engine steps to 

perform a transaction in order to achieve good 

performance [2]. The interfaces exposed by the 

Reflector and Replicators as well as their 

implementation are detailed next. 

 

B. Components Implementation: Initialization, 

Recovery and Replication 

As exposed previously, H2DB is a suitable database 

for this project. The architecture relies on such well-

defined interfaces that interact with database 

implementation and group communication protocol 

using JGroups [19]. This section discusses the main 

concepts of implementation, such as initialization 

process, recovery and replication components. Figure 7 
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shows the functionality of the replicated DBMS 

initialization. 

 

 

Figure 7. State machine diagram of DBMS initialization 

 

Once the database initiates, a service listens to 

database requests. H2DB goes to “Joining to Group” 

state (Figure 7), that looks up to the JGroups replica 

group. If there is any such group, it will be created and 

the replica becomes its leader (master). Otherwise, if 

there is such group, database becomes a member of it as 

a new replica node within the environment. 

After joined the group, database triggers to “Cheking 

Updates” state. In that state, it requests to leader updates 

from its current state: the leader receives the current 

state of a replica, checks if there is any updates to do 

and send a list of commands to new replica update its 

state in order to accomplish with leader state. This is 

part of the recovery synchronization mechanism and 

state replica is gathered from a transaction log.  

The recovery is done at the time of database startup. 

When the DBMS is started on the server, if a replication 

group already exists, the new DBMS that failed will join 

to this group. At this moment, begins the current state 

transmission and all the updates to be performed. This 

state is based on the database operation log – which is 

implemented in order to build the recovery mechanism. 

The log of failed node contains the last operation 

performed by this node. Thus, the leader receives it and 

compares with his last operation from his log, so that the 

leader can send the missing operations to the failed 

node. 

The communication between the new member and 

the leader of the group during the recovery process is 

done via unicast. Upon receiving the instructions, the 

new member will execute them and update their status 

according to the leader's state. Accomplished this 

process, the new replica is now updated and ready to 

receive new transactions coming from the client.  

We developed all replication mechanism for passive 

and active replication. The replication components 

implemented are described as follows. 

 

Reflector. The Reflector component is based on 

architecture model presented in [2]. That component is a 

driver connected to the database engine and its role is to 

intercept all transactions directed to database engine and 

send them to Replicator. Reflector must to be aware of 

the replication strategy (i.e. if active or passive), so the 

proper replication method can be applied effectively. 

Figure 8 shows Reflector interface, providing generic 

behavior for any kind of database system, and a 

specialized class to perform reflection on H2DB: 

ReflectorH2. 
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Figure 8. Class diagram of Reflector component 

 

The intersectSQL is a method that is called when the 

interception of SQL instructions in database transaction 

engine. This method makes the necessary treatments for 

the SQL instructions and verify which replication 

strategy will be used to perform the transaction. 

The methods doActiveReplication and 

doPassiveReplication performs effectively the active 

and the passive replication technique, respectively. 

Depending on the strategy adopted, the Reflector can 

invoke the Replicator instantly or delay it. 

The isSqlReplicationSetter is an auxiliary method to 

validate if the query is a specific SQL command 

recognized just by the database. This command is used 

to change the replication strategy at execution time and 

is detailed further in this section. 

 

Replicator. Replicator is responsible for 

coordinating and interaction among all DBMS replicas, 

so it interacts with Reflector through well-defined 

interfaces and relies on the group communication 

component, as shown in Figure 9. 

 

 

Figure 9. Replicator architecture. Adapted from [2] 

 

There are four process abstraction built within 

Replicator component, presented as follows [2]. 

 

 Capture Process receives the events from 

Reflector, converts them to appropriate events 

within the replicator and notifies the other 

processes. 

 Kernel Process handles the replication of local 

transactions by distributing relevant data and 

determining their global commit order. 

Additionally, it handles incoming data from 

remotely executed transactions. 

 Apply Process injects incoming transaction 

updates into the local database through the 

reflector component. Thus, the communication 

between Reflector and Replicator is bilateral. 

 Recovery Process intervenes and performs the 

recovery of some DBMS replica by other updated 

node. It is applied whenever a replica joins or 

rejoins the group. 

 

Once the request (and the replication strategy to be 

used) is sent to Replicator, in the replication process, 

this can provide 1) replication strategy using group 

communication protocol, based on a generic interface; 

2) a Replicator class; and 3) its interaction with group 

communication through Receiver (Figure 10). Receiver 

is based on JGroups toolkit, which provides total order 

multicast for group communication. 

If the request is a write operation (e.g. update/insert 

command), Replicator send the transaction to the group; 

otherwise (i.e. a query command) it avoids to use group 

communication protocol and process the query locally in 
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order to save network traffic. Figure 10 illustrates all the 

methods exposed by the Replicator that embraces the 

handling of group and the sending and receiving of write 

operations. 

 

 

Figure 10. Class diagram of Replicator component with GC 

 

The method startGroup instantiate a new group in 

the environment, if there is no group already created.  

The sendToAllNodes operation receives the 

transaction and sends it by multicast to all members. 

Part of this method can be represented as the Capture 

Process of Replicator. 

The method receive is part of group communication 

mechanism which receive the message (SQL 

transaction) sent by a node (replica). It is an 

implementation of the method in Receiver component. 

Both receive and part of sendToAllNodes methods might 

be represented as the Kernel Process of Replicator. 

The getLeaderAddress is an auxiliary method. As the 

name suggests, it gives the address of the group leader 

(also called as primary). It is useful when some replica 

needs to perform the recovery process. In this case, the 

node obtains the leader address through this method and 

asks to the leader for the updates. 

Additionally, the getGroupMembers is also an 

auxiliary method which returns all the active members 

within the group of replicas. 

The method executeInstruction can be represented as 

the Apply Process of Replicator. It calls the Reflector 

again to execute the SQL instruction locally. 

The method recovery verifies the necessity of 

performs recovery in a DBMS that joined in the group. 

It symbolizes the Recovery Process of Replicator. 

Finally, to provide dynamic change of replication 

strategy, “Current Replication Strategy” component 

keeps the current replication strategy, queried by 

Reflector. The command bellow can change the 

replication strategy: 

 

 SET  (ACTIVE | PASSIVE)  REPLICATION; 

 

That command is provided as a special SQL 

command that allows the changing of current replication 

strategy. Reflector process that command and registers 

the new strategy on “Current Replication Strategy”. 

 

VI. VALIDATION AND RESULTS 

As seen in Section IV, H2DB is a relational and open 

source DBMS developed with Java programming 

language. To allow our performance evaluation, we 

have changed the H2DB architecture in order to use our 

middleware at transactions process engine. 

As database servers have been relevant to business 

and have become more standardized over years, 

performance has been the differential factor among 

products of varied vendors. Performance benchmarks 

are bundles of tasks that are used to quantify the 

software performance so that people can measure 

quality, time and costs.  

This project measures the transactions per minute as 

a performance indicator in order to assess the latter 

within the H2 database replicated environment. It is also 

applied in this project a benchmark tool used for 

measuring performance in database systems: TPC-C. 
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A. Description 

This section demonstrates all steps made to 

corroborate the new version of H2DB (supporting 

replication). In the end, there is a discussion of results 

comparing the both replication strategies adopted: active 

and passive. 

Regarding validation of built implementation, the 

technique of TPC-C benchmark is used as a means of 

producing a specific load on the system in order to 

verify the effective compliance of the outlined 

objectives. Based on the results retrieved by the 

benchmarks, performance measurement from 

environment was made in the following three scenarios: 

 

1) Centralized: with only a single H2 database 

storing data. In this scenario the benchmarks run 

on H2DB in just a single machine with the 

database switched in centralized mode. 

 

2) Synchronously replicated (active replication 

mode): with two nodes in network supporting H2 

database. In this scenario there is a replica of 

H2DB communicating with another replica on a 

different machine, yet in the same network. The 

communication between the replicas is done 

through group communication method using 

JGroups; the DBMSs are bounded in active 

replication mode. 

 

3) Asynchronously replicated (passive replication 

mode): with two nodes in network supporting H2 

database. In this scenario there is also a replica of 

H2DB communicating with another replica on a 

different machine, yet in the same network. The 

communication between the replicas is done 

through group communication method using 

JGroups; the DBMSs are bounded in passive 

replication mode. 

 

Firstly, the environment features built for testing and 

validation are exposed in this Section. Subsequently, it 

is discussed the benchmark model (TPC-C) used and its 

peculiarities. After, it is presented the execution of 

scenarios with charts illustrating the results. Finally, 

from the results obtained, a comparative analysis of the 

different scenarios is taken in order to draw the 

conclusion. 

 

B. Environment Features 

Because it is an essential factor in distributed and 

ubiquitous computing, heterogeneity and scalability are 

designed for the built environment. To perform the 

validation of the three scenarios defined, a physical 

machine and a virtual machine with different 

characteristics have been done towards greater similarity 

to real environments of distributed computing.  

The environment is compound of a physical machine 

with virtual machine (VM) installed. The physical 

machine’s features are as follows: 

 

 Dell machine with processor Intel® Core™ i7-

3540M CPU @ 3.00GHz and 4MB Cache L3 

 

 8,0 GB of DDR3 Memory RAM 

 

 500 GB space of hard drive 

 

 Windows 7  Operating System Professional x86 

of 64-bit 

 

 Network Adapter Intel® Centrino® Advanced-N 

6205 

 

    Java Virtual Machine 6.0 or greater installed 

 

 VMWare Player 6.0.1 installed containing a 

virtual machine 

 

The settings of each virtual machine inherited from 

the physical machine are as follows: 

 

 Single-Core Processor 

 

 1,5 GB of DDR3 Memory RAM 

 

 8,0 GB space of hard drive 

 

 Windows XP Operating System x64 of 32-bits 

 

http://www.intel.com/content/www/us/en/wireless-products/centrino-advanced-n-6205.html
http://www.intel.com/content/www/us/en/wireless-products/centrino-advanced-n-6205.html
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 Network adapter in Bridge mode 

 

 Java Virtual Machine 6.0 or greater installed 

The virtual machine installed and running under 

VMWare was used to simulate the replication over the 

synchronous strategy (active replication) and 

asynchronous strategy (passive replication). The 

network adapter connected and enabled in Bridge mode 

allows connection to the physical network and 

incorporates it in the same network of physical 

Windows 7 machine, as shown in Figure 11: 

 

 

Figure 11. Architecture environment for validation 

 

On each machine it has been deployed the new 

version of replicable H2DB, which has its own console 

server to database access and logs reading. 

With regard to scalability, the environment also 

includes such a feature. If it is desirable to increase the 

number of replicas in the whole environment, it is 

possible to attach more nodes depending on the needs of 

a particular scenario.  To do so, simply create and add a 

new virtual or physical machine, incorporating it into 

the same network of the other nodes, and deploy H2 

database in replicable mode into the new machine. 

Thus, the new replica will join the group and will be 

recognized as a new member - also applying the 

replication of transactions sent to all DBMSs. There is 

therefore a minimal effort to increase the number of 

replicas in the environment, supporting the concept of 

system horizontal scalability (scale out). 

 

C. TPC-C Benchmark Model 

In order to perform benchmarks for the new version 

of H2DB, it was used a worldwide renowned patterns 

defined by a non-profit organization, namely, 

Transaction Processing Performance Council (TPC). 

The purpose of TPC is to define transaction 

processing and database benchmarks used by the 

industry in pursuance of evaluating the performance of 

computer systems [20]. 

Generally, the TPC creates benchmarks that assess 

transaction processing (TP) and database (DB) 

performance. These measures provide an inference of 

how many transactions a particular system or database 

can perform per unit of time. The evaluation of this 

project, specifically, measures the number of 

transactions per minute (tpm). 

In the same way as tpm measure, the TPC presents 

and additional measuring entitled tpmC. This metric 

concern measures the New-Order transactions (type of 

TPC-C transaction which will be described forward) per 

minute and the number of orders as it can be fully 

processed per minute. During the execution of 

benchmarks, we compute the total number of performed 

New-Order transactions. Then, we divide this value by 

the subtraction of the time that execution finished and 

the time it was started. Given this result, we multiply by 

60000 which is the absolute value, in milliseconds, of 

the desired unit (in this case, minute). Thus, the 

benchmark tool can reach an approximate measurement 

of tpmC. The equation below shows the formula to 

calculate the tpmC: 

 

             
    

                     
 

 

The nrNO represents the total number of New-Order 

transactions executed during the unit of time (one 

minute). The tpmC depends strictly on overall system 

characteristics – described previously. As a result, all 

values obtained in the benchmarks’ execution of this 

project also include the tpmC metric and are related to 

the environment features adopted.  

According to TPC standard, there are some types of 

benchmarks to support different needs, such as TPC-

Energy (for measuring and reporting an energy metric in 

TPC Benchmarks), TPC-E (for On-Line Transaction 

Processing – OLTP – workload developed by the TPC), 
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TPC-H (for ad hoc decision support benchmark), TPC-C 

(for a simulation of complete computing environment 

where a population of users executes transactions 

against a database), among others that can be found in 

more details in [20]. 

As it is required for this project to make the 

measuring of transactions against a database, it was 

chosen the TPC-C approach [21]. This approach is a 

combination of read-only and update transactions that 

simulate the intense activities found in complex OLTP 

application environments. Moreover, the TPC-C model 

represents the activity of most common industry which 

must manage, sell or distribute a product or service, 

instead of focus in a particular industry activity.  

Additionally, TPC-C has five types of transactions 

that are performed during the benchmark execution. 

These transactions have different characteristics, which 

can vary on weight (some are heavier than others) and, 

consequently, on the time spent to be performed in the 

database in order to simulate a production environment 

of data manipulation. Each transaction type belonging to 

TPC-C executed in all benchmarks scenarios of this 

project is described as follows [21]. 

 

New-Order transaction. This is a mid-weight 

transaction and it is considered as the backbone of the 

workload. It is comprised of data reads and writes which 

are frequently executed and has a stringent response 

time requirements to fulfill online users’ necessities. As 

the name implies, the New-Order transaction consists of 

entering a complete business order through a single 

database transaction. It is designed to place a variable 

load on the system to reflect on-line database activity 

that meets to real environment actions. 

A new order is done in a single transaction with the 

following steps:  

 

1. Creation of an order header containing:  

 2 row selections with data retrieval; 

 1 row selection with data retrieval and update; 

 2 row insertions.  

 

2. Request a variable number of items (average 

items_cnt = 10) to be included in the order header 

created, containing:  

 (1 × items_cnt) row selections with data 

retrieval; 

 (1 × items_cnt) row selections with data 

retrieval and update; 

 (1 × items_cnt) row insertions. 

 

Payment transaction. This is a light-weight 

transaction comprised of data reads and writes which are 

frequently executed. It has also a stringent response time 

requirements to fulfill online users’ necessities, as it 

does not include primary key access to the table of 

customers. As the name implies, the Payment business 

transaction updates the customer's balance and reflects 

the payment on the district and warehouse sales 

statistics.  

The Payment transaction enters a customer's payment 

with a single database transaction and performs about 3 

or 5 selections and 1 row insertion. 

 

Order-Status transaction. This is a mid-weight 

transaction comprised of read-only database transaction 

with a low frequency of execution. It has also a low 

response time requirements to fulfill online users’ 

necessities, as it does not include primary key access to 

the table of customers. As the name implies, the Order-

Status business transaction queries the status of a 

customer's last order.  

The Order-Status transaction performs about 2 or 4 

rows selections with data retrieval to find the customer; 

and 1 × items_per_order (average items_per_order = 

10) rows selections to check the delivery date of each 

item on the order requested. 

 

Delivery transaction. This type could be comprised 

of one up to 10 database transactions. It has a low 

frequency of execution and does not necessary need to 

be completed within a stringent response time as a 

requirement. This transaction consists of processing a 

batch of 10 new (not yet delivered) orders. Each order is 

processed (delivered) in full within the scope of a read-

write database transaction.  

The Delivery transaction delivers one outstanding 

order (average items-per-order = 10) for each district in 

the warehouse using one or more (up to 10) database 

transaction. This process includes, for each order: 1 row 

selection with data retrieval; 1 row selection with data 

update; and 1 row deletion. 
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Stock-Level transaction. This is a heavy read-only 

database transaction with a low frequency of execution. 

It does not necessary need to be completed within a 

stringent response time as a requirement and has relaxed 

consistency requirements. This transaction determines 

the number of recently sold items that have a stock level 

below a specified threshold. 

 

As seen, the TPC concerns a commonly understood 

group of transactions in the business sphere, such as 

commercial exchange of goods, services or money. 

Hence, the transactions would include the updating to a 

database system for an inventory control (goods), airline 

reservations (services), banking system (money), among 

others. Furthermore the TPC-C model addresses the 

basic needs for measuring performance on database 

systems, including patterns and a set of different 

transaction types. For this reason, we have been using 

the TPC-C as a means to measure performance over H2 

database in replication approaches and even in 

centralized mode. 

 

D. Execution of Scenarios and Results 

The benchmarks were executed according the 

scenarios described previously. The database tables 

required by TPC-C model [21] were created in H2DB 

and then we populated the tables with 598.587 rows. 

The time taken for each benchmark was 60.000 

milliseconds. Moreover, for each scenario was opened a 

terminal where all transaction types (New-Order, 

Payment, Order-Status, Delivery and Stock-Level) were 

performed during 1 minute (60.000 milliseconds). 

We have considered, in percentage, the following 

transaction weight: 

 New-Order: 45% 

 Payment : 43% 

 Order-Status: 4% 

 Delivery: 4% 

 Stock-Level: 4% 

 

In centralized mode, a range of transactions were 

executed over H2DB in order to measure the total time 

that each transaction type took to be fully processed in 

the DBMS. Graphic1 illustrates the results of these 

measurements: 

 

 

Graphic1. Benchmark results: Centralized 

 

In passive replication the database was switched to 

passive mode. Then we opened a new terminal to run 

the benchmarks. We have also measured the total time 

of each transaction type – illustrated in Graphic2. 

 

 

Graphic2. Benchmark results: Passive Replication 

 

Finally, active replication was switched in H2DB. 

Then we also opened a new terminal to run the 

benchmarks and measure the total time of each 

transaction type, as shown in Graphic 3. 

 

 

Graphic 3.Benchmark results: Active Replication 
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Because the New-Order transaction is a mid-weight 

transaction and it is considered as the backbone of the 

workload, it spends more time executing than the others. 

Even having similar weight to the Payment transaction 

(45% for New-Order and 43% for Payment), the New-

Order lasted a significantly time longer. It is explained 

because Payment transaction is a light-weight 

transaction. 

Based on TPC-C Ben chmarks executed over H2DB 

in centralized and replicable mode, we can demonstrate 

the behavior of different scenarios and evaluate the 

results. As expected, the centralized database could 

handle a significantly larger number of transactions 

compared with the same environment and database in 

replicable mode. Furthermore, the passive replication 

performed more transactions than active replication 

during the same period of time. 

Three benchmarks execution were done for each 

database mode. Table 2 shows all results obtained in 

transactions per minute (tpm). 

 

 Centralized Passive Rep. Active Rep. 

Benchmark 1 5.381 tpm 783   tpm 321   tpm 

Benchmark 2 5.736 tpm 673   tpm 482   tpm 

Benchmark 3 6.095 tpm 531   tpm 382   tpm 

Average 5.737,33  662,33 395,00 

Standard  

Derivation 
357,00 126,34 81,28 

Confidence  
Interval 

403,98  142,96  91,98  

Table 2. Results of benchmarks execution 

 

We calculated the average tpm for each strategy in 

order to find the standard derivation and the confidence 

interval of 95%. From values extracted we can conclude 

that in 95% of benchmarks that could be executed in 

active mode, the transaction per minute can vary from 

303tpm to 487tpm. On the other hand, the passive 

replication can vary from 519 to 805. Graphic 4 shows 

the average of transaction per minute for each strategy 

and the error bar according to the confidence interval 

calculated. 

 

 

Graphic 4. Confidence interval of average results 

 

We conclude that if it is necessary to execute more 

transactions (within a period of time) and give a faster 

reply to the client, our replicated database can be set up 

to apply the passive replication, since this is the 

replication strategy which executes more transactions 

per minute – as shown in Graphic 4. The passive 

replication however has a longer response time for 

failures when compared to active replication. 

On the other hand, if it is needed an environment that 

all replicas are 100% of time synchronized and the 

clients are able to send requests to any replica (update 

anywhere model, presented previously), we can switch 

at runtime to set the active replication with no effort, as 

described in Section IV. 

 

VII. CONCLUSIONS AND FUTURE WORK 

This work aims at exploring an approach for 

adaptability in the context of replicable database 

environments. It shows that database replication is a 

complex solution that involves different decisions to 

every particular problem. Although it might be hard and 

expensive to apply, if developed in the right 

circumstances for a particular issue, the replication can 

be fitted perfectly as a good solution, enhancing both 

performance and high availability for fault tolerant 

systems and scenarios that require high scalability. 
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Thus, this project encompasses the developing of a 

middleware, for database replication, based on a generic 

architecture and adaptable to different replication 

strategies. Figure 12 illustrates the scheme proposed for 

a cloud environment within the replication middleware. 

 

 

Figure 12. Proposed scheme for a cloud environment 

 

As shown in Figure 12, the application can define the 

desired service level for database nodes. This means that 

an application is allowed to switch at runtime the 

replication level. If it is suitable for the application to 

have a passive environment at a certain instant, 

application can send an operation to database 

middleware defining the passive mode. On the other 

hand, there could be another situation that is preferable 

to have an active environment, so the application is able 

to interact with the middleware which can change it at 

execution time. 

Furthermore, some benchmarks based on TPC-C [21] 

model were executed over the replicated database 

environment in order to validate the implementation. As 

a result, we calculated the tpm (transactions per minute) 

and obtained the average, standard derivation and 

confidence interval. Some charts were drawn to 

illustrate the results and compare them to each strategy 

that was implemented. The experimental results reported 

here point out that the building of a replication 

environment in H2DB is consistent and the processing 

times correspond to what was expected – according to 

the foundation studies of replication strategies. 

Finally, a proposal for future works is an 

implementation focused on commercial environment of 

cloud computing which the choice of replication 

strategy is not regarding to the application that uses the 

database or any other user (such as a database 

administrator). Instead, the cloud environment should be 

able to adjust automatically the database replication 

strategy based on the computational resources 

measuring. There should be a component whose role is 

to measure a set of resources that might impact the 

performance of the whole system, such as: 

 

 CPU time; 

 Memory usage; 

 Hard disk space; 

 Network throughput; 

 Input/output operations; 

 Electrical power, etc. 

 

For instance, if there are plenty of available 

resources, the cloud environment can set the active 

replication; if not, it can switch for passive replication 

automatically in order to minimize the use of network 

resources and, moreover, use fewer number of replica 

nodes – since this strategy requires less resource 

consumption. 
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