
1This work is part of the requirements for certification as Specialist

on Ubiquitous and Distributed Computing under supervision of
professor Allan Edgard Silva Freitas at Instituto Federal da Bahia.

Bruno Cesar Neves de Oliveira
1

Instituto Federal da Bahia

Salvador, Bahia – Brazil

Email: brunocn.oliveira@gmail.com

Abstract—Database replication has been a constantly

discussed and studied topic. Replication is a fundamental factor

that comply the companies’ needs that leads with relevant

information. Applying database replication in a right way with

well-defined interfaces guarantees that high availability,

performance and connectivity are maximized. When we design a

replication database environment, group communication and

fault tolerance are important aspects that must be considered so

that DBMS features are sustained, such as consistency, integrity,

security and others. This paper presents an approach to apply

and adaptable replication in a DBMS. This means that a

database should support different replication strategies and

allow, at runtime, that the strategy adopted could be changed.

For each scenario or specific system situation (either an

enterprise environment or a shared cloud), replica nodes provide

an interface that enables to adjust the way that replication is

done – adapting to the needs of certain instant.

Keywords—Database, fault tolerance, group communication,

replication.

Resumo—Replicação em Sistemas de Gerenciamento de Banco

de Dados (SGBD) tem sido um tópico cada vez mais discutido e

estudado. A replicação é o fator primordial para atender as

necessidades das empresas que lidam com informações relevantes.

Aplicar a replicação em banco de dados de forma correta com

interfaces claras e bem definidas garante que a alta

disponibilidade, desempenho e conectividade sejam maximizados.

Projetar um ambiente de banco de dados replicável requer que

aspectos como comunicação em grupo e tolerância a falhas sejam

considerados de modo que as características do SGBD sejam

mantidas, tais como consistência, integridade, segurança, dentre

outros. Este artigo apresenta uma abordagem para aplicar

replicação adaptável em um SGBD. Isto significa que um banco de

dados deve suportar diferentes estratégias de replicação e permitir,

em tempo de execução, que a estratégia adotada seja alterada. Para

cada cenário ou situação específica do sistema (seja em um

ambiente corporativo ou em uma nuvem compartilhada), os nós

das réplicas fornecem uma interface que possibilita ajustar a forma

como é feita a replicação, se adaptando às necessidades

momentâneas.

Palavras-chave—Banco de dados, tolerância a falhas,

comunicação em grupo, replicação.

CONTENTS

I. INTRODUCTION ...2
A. OBJECTIVES ... 2
B. PAPER STRUCTURE .. 3

II. BACKGROUND ...3
A. DATABASE ENVIRONMENT: AN OVERVIEW OF CENTRALIZED AND

DISTRIBUTED DBMS .. 3
B. REPLICATED DATABASES .. 4
C. FAULT TOLERANCE .. 5
D. GROUP COMMUNICATION ... 6

III. DATABASE REPLICATION TECHNIQUES7
A. ACTIVE REPLICATION ... 7
B. PASSIVE REPLICATION ... 8

IV. DEVELOPMENT INFRASTRUCTURE8
A. DBMS – H2DATABASE ... 8
B. GROUP COMMUNICATION – JGROUPS 10

V. SIMULATION-BASED APPROACH 10
A. ARCHITECTURE MODEL FOR IMPLEMENTATION 10
B. COMPONENTS IMPLEMENTATION: INITIALIZATION, RECOVERY

AND REPLICATION .. 11

VI. VALIDATION AND RESULTS .. 14
A. DESCRIPTION ... 15
B. ENVIRONMENT FEATURES .. 15
C. TPC-C BENCHMARK MODEL .. 16
D. EXECUTION OF SCENARIOS AND RESULTS 18

VII. CONCLUSIONS AND FUTURE WORK 19

REFERENCES ... 20

An Adaptive Replication Environment for

a Relational Database Management System

2

I. INTRODUCTION

N increasingly valuable element to people and

organizations around the world is information.

Modern society has been living over

information era, where data must be constantly present,

handled and processed as fast as possible [1].

Information is becoming so important today, mainly in

business, that a slight failure in data access may cause a

huge problem. For instance, if a telecommunication

platform enters in bypass mode (because the

environment is unavailable) or a bank system goes

down, the company will most likely suffer a

considerable loss of revenue due to data unavailability.

If a database that stores all data of a company goes

down, critical information can be lost or become

inaccessible so it cause significant damage. In order to

deal with data unavailability and its consequence and

also to overcome the potential problems caused by

centralized DBMS (Database Management System)

approach, we use data replication approach. Such

approach is discussed in Section II.

Database replication has been a frequent feature in

DBMS scope for the last years. In this context, each

database is autonomous, allowing tuning for the best fit

configuration to a specific scenario, as well as

increasing the performance of each individual DBMS

replica according to their needs.

Furthermore, the modularity is another important

aspect that must be considered. Using database

replication, it is possible to create well-defined

interfaces that connect several flavors of database and

can, moreover, make use of different types of replication

protocols. To reach these goals, it is necessary to

provide: (a) a "friendly" well-defined replication

interfaces; (b) group communication support; and (c)

"pluggable" (or connectable) replication protocol. In

other words, they can be replaced in the architecture

seamlessly without large impacts [2].

It is possible to achieve a suitable architecture for

DBMS replication joining these three requirements.

Well-defined interfaces and "pluggable" protocols,

allows attains the modularity and flexibility. On the

other hand, it is possible to obtain reliable delivery of

messages to all system replicas through the adoption of

a mature group communication protocol.

Fault tolerance and the group communication

techniques are intimately linked and give the

foundations to replication. Database replication has been

constantly debated as an efficient way to increase high

availability and performance on data retrieval. Given a

replicable database environment it is possible that each

DBMS has its own configurations and tunings, though

information is always consistent throughout the system

nodes.

The advent of cloud computing [3] and its fast

growth is transforming the information technology

industry. Many companies are considering convenient to

host their DBMS to the cloud letting to it the duty of

data management, including all required resources to

accomplish the desired performance with high

availability. It is also important that each replica node

interact harmonically with the cloud or even more:

provide effortless mechanisms to reach the best

performance.

An extremely useful mechanism to the cloud might

be the support of different replication strategies in the

same database. Aligned with this, allows changing these

replication strategies dynamically (at runtime) with no

additional builds (compilations), makes the environment

adaptable and save costs to the cloud hosting and

customers.

Therefore, it is essential to study and develop new

techniques driven to the practice of replication in

databases in order to achieve the desired high

availability and performance of distributed enterprise

systems.

A. Objectives

The purpose of this project is to develop a general

middleware that can be attached to a DBMS in order to

replicate database operations through different replicas

located in several sites. This middleware is based on

group communication protocol to allow total order

delivery [4] of SQL instructions to all replica nodes.

Additionally, two replication strategies are

implemented into the same database in order to make a

comparison of both methods immersed in the same

environment. The main idea is to have a database able to

support both active and passive replication techniques.

This becomes an advantage, since we can adapt

A

3

replication strategy to be used according to a desired

service level, once that most of the DBMS support just

one strategy for replication.

Finally, a performance evaluation of both replication

implementations is done. The contribution of this paper

is therefore the valuable capability of switching

replication strategy at execution time. Thus, depending

on the environment behavior, the database can behave

differently in order to enhance performance and save so

much effort and resources.

B. Paper structure

The rest of this paper is organized as follows. Section

II gives a background discussion concerned on the main

topics related. This section identifies the reasons of

using distributed and replicable databases,

distinguishing them from centralized method. It also

presents how replication is related to distributed

computing fundamentals, addressing to fault tolerance

and group communication – mighty important and

applied on replication strategies.

Section III clarifies the essential notions of database

replication strategies to understand how they work. It is

noteworthy to point out these concepts so as it gives

foundation in understanding further the implementation

and benchmarking comparison of both active and

passive methods.

Section IV presents the development infrastructure. It

shows the DBMS used throughout the project (H2DB)

and the group communication toolkit adopted (JGroups).

The implementation details as well as each part of

the generic architecture for database replication are

described in Section V.

Section VI evaluates the replication environment

with a benchmarking approach widely used: TPC-C. It

also discusses a comparison of both replication

strategies and the centralized mode (database with no

replication) and shows the results drawn during the tests.

Finally, Section VII summarizes the entire project

and draws a conclusion reached on this paper as well as

a discussion of future directions.

II. BACKGROUND

This section surveys the most important concepts of

database environment to contextualize replication

database as well as the main related subjects in this area,

such as fault tolerance and group communication.

A. Database environment: An overview of

centralized and distributed DBMS

The primary and necessary tool for the storage of

relevant information in a corporation is a database.

Regarding relational database it is important to ensure

the data consistency. Thus, there are some concerns such

as independence, control and data integration, treatment

of redundant information, and others, which are featured

in a database management system. All these features can

be wrapped into a single centralized DBMS, as well as

in many geographically distributed servers.

Since database has several important features, it is

appropriate to host the DBMS on a dedicated server and

let it always available to users, as well as all external

systems that access the database. The DBMS presents

significant advantages of security primitives and severe

restrictions to their access. There are some drawbacks

when it is used in a single centralized environment,

though. In this case, if there is an interruption in the host

server, or even a failure in the software itself, the DBMS

will be unavailable. Thus, all users and systems that

need database will be, inexorably, blocked from

accessing any information - until the failure be remedied

and the database back to normal operation.

On the other hand, the idea of distributing data

geographically appears in objection to leave them in a

single centralized server. In this direction, all data will

be scattered throughout the distributed network, each

one with their own storage devices. Thus, the storage

devices are not attached to a common processing unit

such a CPU and can exchange messages through

networked computers [5].

It should also have transparency in information

access, that is, it is not required from users – when they

perform a query or manipulate data – a prior knowledge

of where all the necessary data are specifically stored.

The customer just performs a query and data is returned,

regardless of whether the query was requested on the

machine/server where the data was persisted. It might be

4

extremely complex to make possible this distribution

and transparency location of information. To perform

this role easier, there is already an approach called

Distributed Database Management System, or simply

Distributed DBMS. Elmasri and Navathe [6] define a

distributed database as a collection of multiple databases

logically interrelated and distributed across a computer

network.

In spite of the fact that it presents more complexity

and requires a higher cost of implementation, distributed

DBMS ensures fairly data availability and modularity,

when compared with centralized DBMS. Even though

distributed DBMS brings up a good alternative to keep

the data more available for users than centralized

databases, it still has some shortcomings.

When one or more servers fails, some information,

which was stored in one of these faulty servers, may be

inaccessible. Additionally, the availability – in some

cases – can be affected when, for example, a query is

performed with significant joins of geographically

distant data. For instance, if the query contains three

joins within three tables (hosted in different places), it

will have a performance decrease owing to the huge

flow of sending messages to change information

between the servers.

As seen, distributed DBMS still has some

unsatisfactory flaws when high availability and

performance are required indeed. For these reasons, it is

necessary – in robust systems that require a high

availability of data – the usage of multiple identical

DBMS that communicate each other harmonically in

order to maintain the consistency and integrity without

loss of availability. This approach is known as replicated

database and is described next.

B. Replicated Databases

One of the approaches adopted to increase the

availability of a system/database keeping natural

attributes (such as consistency, integrity, security, etc.)

is named replication. The aim of replication is to provide

the combinations of high availability, high integrity,

scalability and, in some cases, enhance the performance

of both systems and database. This is achieved due to

the creation of multiple copies of a possibly mutating

data object, such as a file, a database, or other kind of

data source [8]. Replication therefore provides effective

ways to increase availability and improve fault tolerance

in distributed systems.

In order to accomplish a replication environment in a

set of database there must be redundancy of information

among all nodes (replicas) within the environment.

According to Junior-Alfranio [7], “redundancy is a key

element to provide fault-tolerant applications with

increased performance”. Namely, it is possible to

enhance performance and avoid failures on robust

systems using redundancy.

The strategy adopted to take place redundancy in

practice is replication. Replication can be implemented

in database systems by two or more DBMSs that

provide the same schema and data and are able to

communicate each other through the network. Thus,

replication is considered as a method to perform data

duplication.

In a replication database environment, several

replicas are needed so that high availability and integrity

can be achieved. Also, the use of several replicas

enables to deal with a number of independent failures.

Hence, each DBMS may have their particular

configuration of hardware and software, even though all

of them store the same data item.

As stated by Renesse [8], in order to achieve high

performance it is necessary to use a sufficient number of

replicas so that it is possible to meet the load imposed

on replicated objects. That is, depending on the business

needs, the more data availability desired, more replicas

can be included within the environment.

There are two models of database replication that

might be applied in a production environment: 1)

primary backup and 2) update anywhere. Each of these

two models holds their own advantages and challenges

depending on the environment where they can be

applied [9].

The first requires a master node for the entire

replication environment. This master node is responsible

for receiving requests from any sources and replicate

transactions to other nodes in the network. The

remaining replicas of the environment, therefore, are

read-only. When a node needs an update, it requests the

master to perform the update process. All updates

emanate from a master copy of the object. As shown in

5

Figure 1 (a), clients communicate with the master copy

and this one takes care of updating the others.

On the other hand, the update anywhere model

enables that any node in the environment process a

request from the client and update a data item. The other

copies are updated by the node which received that

particular request with the update transaction. Because

there is no master, replicas can communicate with any

node in the environment. In this case, updates may

emanate from anywhere, namely, clients can

communicate with any node. This model is illustrated in

Figure 1 (b).

Figure 1.Models of Replication: a) Primary-backup; b) Update anywhere

As a result, the replication database has some

advantages over a purely distributed database with no

replication. Some of these advantages are listed as

follows:

 Increasing data availability, as any data can be

accessed in different places;

 Increasing reliability, since data can be accessed

even when there is unavailability of one node;

 Reducing network traffic at peak times, since

replication can be scheduled to happen at specific

times with less traffic of data;

 Improving response time for search and data

aggregation;

 Transparency in redundancy of information and to

clients’ accesses.

Some relational database management systems

(RDBMS) offered by renowned companies have already

native replication support, for example, Oracle

Replication [10] and SQL Server Replication [11].

Nevertheless, the replication model is strictly closed and

hard to change and adapt to business needs. The

customers and developers become hostage to its closed

technology and protocols used by information sharing

and group communication. On the other hand, when

developers build their own replication methods, they

gain freedom and autonomy to optimize their resources

as well as approach it from the customer’s needs (such

as performance and security) in a convenient way.

It is possible to implement decentralized

applications, optimize performance through load balance

or even direct the request to be processed into a

geographically closest server from the client.

C. Fault Tolerance

To achieve availability and prevent disasters arising

from the loss of important information or valuable data,

it is necessary to apply mechanisms to tolerate system

6

failures. These failures may have several causes and

could be managed by software fault tolerance or

hardware fault tolerance. While the software fault

tolerance looks after software failures, hardware fault

tolerance usually comes from hardware issues and is

mostly discussed by the electrical engineering

community [12]. Availability and reliability of

information are both related and are included as part of

the strategy for fault tolerance. The fault tolerance

mentioned in this paper concerns on crash failures, since

the most proposed techniques of replicable

environments leads with this failure type.

The basic goal of fault tolerance is to fulfill the

dependability aspects [12]. This seeks to enhance the

safety and quality of service offered by the system,

increasing its reliability, enlarging its availability and

facilitating maintainability (among others, as shown in

Figure 2 [12]). In other words, the system should behave

as desirable avoiding potential failures and, additionally,

increase the time which it is available to provide

services to clients (either users or other systems).

In order to avoid absence or loss of information, it is

required that the system stay always available.

Availability is one of the attributes of dependability, as

illustrated in Figure 2, and it is not cheap to achieve a

high availability.

Figure 2. Dependability and security attributes (A.

Avizienis, et al, 2004 [12], p.14)

There are many different terminologies found in the

literature to refer the high availability [13]. A system

can be featured as high available if it was designed and

built with a sufficient number of components of

hardware and software to assure its functionality.

Furthermore, it must have enough redundancy in the

components to prevent predetermined failures.

To implement and maintain redundancy of

information, replication methods are used so that part of

dependability (availability) can be achieved.

Dependability supports availability and this last one

contains redundancy. Furthermore replication is used to

duplicate the data, maintain redundancy and achieve the

highest level of availability and dependability.

Redundancy strategy is used in traditional high

availability platforms. If a system requires high

availability and, consequently, it implies on redundant

information, the replication of data becomes mandatory.

To do so it is recommended to handle a set of databases

which have duplicate data and apply the replication

mechanism. Thus, this set of databases will form

distributed and replicated databases which provide high

availability. If one database replica fails in the

distributed system, the other replicas may be able to

operate and offer the information, since they have the

same data as the first one that failed. Therefore, the

failure of a site does not necessarily imply the shutdown

of the entire system.

D. Group Communication

In the context of distributed systems, it is important

to have an effective communication among the involved

processes. For communication occur, there must be a

communication channel (typically the network) that

enables computers (processes) exchange messages with

each other. There is an abstraction to perform this

communication mechanism as known as group

communication (GC). Group communication is used by

most distributed applications, especially for the

replicated database systems, since the replicas

(considered processes or nodes) are constantly changing

messages such as transactions and data updating. The

GC might be considered as a middleware between the

layer which implements replication and the transport

layer, as shown in Figure 3 [14].

Figure 3. Group communication [14]

Group communication abstraction aims to solve basic

problems of inconsistencies in communication among

distributed processes that cooperates to perform the

execution of some task. Thus, a group is basically a set

7

of processes that cooperate each other to achieve a

common goal. A group is also identified by a name so

that messages can be sent to all members referencing the

group identifier. Thus, the abstraction of GC is aware of

the group members and delivers the message to all

active processes (members) [14].

The communication among processes forming a

group is accomplished through a mechanism called

diffusion - a message to be transmitted is sent to all

members belonging to the group. An important property

of the diffusion process performed by group

communication is atomicity. In general, group

communication protocols ensure that a message, once

delivered to a particular group process, is also delivered

to all other processes running in the same group

(atomicity), even if the process that originated the

message fails before finalizing the transmission.

Another property, generally secured by GC

abstraction, is the total order in which messages are

delivered to different processes (total order). A total

order protocol delivers messages in the same order for

all processes in a group. For instance, the GC protocols

aid in synchronize all the transactions and execute them

inside each replica in the right sequence. This property

has a profound importance for database replication

environment, as it is required the isolation of each

transaction performed by DBMS.

Using multicast communication, messages can be

sent exactly to the group of machines that are interested

in receiving the message. Thus, apart from getting ease

the implementation of other abstractions, group

communication service has also been held as a basic tool

to programme general distributed applications. It eases

the implementation of replication protocols by providing

abstractions for message reliability, ordering and failure

detection [2].

There are some different implemented abstractions

for group communication provided by developers’

community. The toolkit used in this project is described

in section IV.

III. DATABASE REPLICATION TECHNIQUES

Prior sections discuss the key points concerned to

database replication environment and how they are

related. Developers can create a replicable database

environment applying the concepts of redundancy and

fault tolerance working together with group

communication techniques.

When data is replicated, atomicity and isolation need

to be guaranteed. For atomicity there is no much

problem, since it can be guaranteed by using 2 Phase

Commit [15]. The challenge, however, is to ensure that

serialization orders are the same at all sites. In other

words, it is primordial to guarantee that all nodes

execute the same operations exactly in the same order;

otherwise the copies would be inconsistent.

Some techniques have been proposed in managing

replicated data. An efficient and effective replication

technique is decisive to improve both the availability

and performance. Thus, data and transactions can be

replicated aimed at failures recovery.

Replication can be classified according to the means

that a set of replicas receives and processes requests

from a client [16]. This section analysis the most

common techniques used to replicate databases and

compare each other: active replication versus passive

replication. It gives therefore the understanding of

implemented replication (discussed in next sections) and

the comparative tests performed in both strategies that

can be switched at runtime.

A. Active Replication

The active replication, found sometimes in the

literature as state-machine approach [7] [16], is a heavy

replication mechanism which receives the requests from

a client and send to all replicas to process in the same

deterministic way, namely, all replicas updates the

instructions in the same order. Then, the replica that

received the client request sends back the response to

the client.

This technique allows any node to update any local

data, so it is based on Update-Everywhere replication

model – as shown in Figure 1 (b). The front end (which

could be one node that receives the request) sends the

requests as a multicast message to the group of

replication manager. All replication managers (hosted in

each node) process the request independently, though it

is done in an identical way. Supposing that a replica

manager fails by crash, the service still works since the

other replica managers can process and reply the

requests naturally [16].

In this technique, a read operation is allowed to read

any copy of data. Meanwhile, a write operation is

8

required to write all copies of data. Even though this

seems to be a great and elegant technique, it has a

significant drawback that affects the whole system due

to the high resource usage: performance. In this case, the

replica managers demand high consumption of

resources, since all nodes need to execute the same

transaction before send the response to the client. It

reduces update performance and increases the

transactions response time [16].

On the other hand, according to [16], the main

advantage of active replication is its simplicity (e.g.,

same code everywhere) and the failure transparency in

view of the fact that they are fully hidden from the

clients. Besides that, active replication keeps all sites

exactly synchronized by updating all the nodes as part of

one atomic transaction.

B. Passive Replication

One of the most popular replication techniques is

passive replication, also called Primary-backup

technique. In this technique one of the replicas is

designated primary. Generally, the designation of the

primary replica is accomplished according to the node

that has not crashed and that has the lowest identifier.

The remaining nodes are called backups.

The front end (which could be one node that receives

the request) communicates only with the primary replica

manager. This executes the operations and sends the

resulting state updates to each of the replicas (including

itself), which, passively, apply the state updates in the

order received. Thus, this technique is based on

Primary-backup model shown in Figure 1 (a). The

primary replica receives the requests from a client,

processes them, and replies back to the client. Changes

gathered in the execution are propagated to other

replicas (backup) either in a lazy or eager approach [7].

In passive replication it is not necessary that

operations be deterministic – the main disadvantage of

active replication. Typically, the primary will resolve

non-determinism and produce state updates, which are

deterministic. If the primary fails, the client determines

one backup to be promoted as the new primary to whom

it retransmits its update.

Figure 4 shows the different ways that passive and
active replication works on data propagation. Passive
replication asynchronously propagates replica updates to
other nodes after the updating transaction commits.
Because it is faster, some systems that need to improve

response time use passive replication, instead of active
replication.

Figure 4. Data propagation: a) Passive replication; b)

active replication

The example of Figure 4 shows an environment

composed by 3 replica nodes that receives 3 operations:

1. Write a; 2. Write b; and 3. Commit. In passive

replication, the Node 1 updates the whole transaction

and then sends the operation to other nodes. Active

replication updates all nodes for each operation, thus the

replicas are always updated.

In contrast to the active replication, in passive

replication there is no transparency to the clients when

failures happen. It is necessary to guarantee that updates

sent by the new and the faulty primary are received and

applied in the same order in all replicas.

IV. DEVELOPMENT INFRASTRUCTURE

This section discusses development infrastructure

used to implement the database replicable environment.

First it presents the database used and shows the reasons

of why this has been chosen. Secondly, the group

communication toolkit is presented.

A. DBMS – H2Database

The simulation was implemented in H2 database

which is a relational database management system

written in Java and distributed under an open source

license. It is a lightweight database which is shipped

with JBoss AS (JBoss Application Server 7) [17]

distribution and other reasonable important projects such

9

as nWire
1
. It is also already supported by object-

relational mapping (ORM) tools, for instance Apache

OpenJPA and Hibernate ORM.

Because it is an open source lightweight database and

it is written in a high level object oriented language

(Java), H2DB becomes a convenient choice for

developers to build and test applications with more

efficiency and advanced configuration.

Figure 5 was drawn based on some benchmarks

accomplished by H2 team [18].

Figure 5. Sample client-server performance comparison of

H2DB to other database engines. Reprinted from [18]

As it can be seen in Figure 5 H2 database overtops

performance in many cases when compared to other

similar open source databases. Besides its speed, there

are other meaningful reasons to use H2DB.There are

two different ways that H2DB can be used in, as

follows:

1. Running in a server as a client-server mode

(traditional way); and

2. Embedded in Java applications where data will

not be persisted on the disk, just in memory. This

mode is generally used in games or huge

frameworks like JBoss AS that comes with a

H2DB configured as in-memory database.

Thus, if it is necessary to get the best from H2

database it is appropriated to use a server mode database

1nWire – Software Visualization Tool. Available at:

http://www.nwiresoftware.com

– which in fact exposes advanced features, for instance,

exposes TCP/IP socket for other processes.

On the other hand, the embedded mode is practical

and gives to developer the flexibility to install the

software in a portable device or even share the database

on a cloud environment.

As it is an open source project, it is also supported by

open source community. H2DB is lightning fast for

small to midsized databases so as it is suitable for the

proposed project of replication. In addition, traditional

open source databases such as MySQL and PostgreSQL

also provide replication mechanisms already

implemented.

Despite all these advantages, H2DB has its

undesirable features as follows:

i. Code maturity: compared to the large databases

such as Oracle, IBM DB 2, MS SQL Server,

MySQL, PostgreSQL, the Java databases are

relatively new and therefore not so stable.

ii. Commercial support: even though H2 database

has a commercial support, it is not so wide and

easy if compared to more renowned database.

In spite of that, H2DB remains advantageous to

implement the replicable environment and comparative

tests. Even though it is not recommended for large

companies, it can be attractive useful for both

development and test due to its flexible configuration.

Table 1 presents a comparison among H2DB, Derby,

MySQL and PostgreSQL database. Indeed, Table 1

points out some differences in features of these DBMSs.

Feature H2DB Derby MySQL
Postgre

SQL

Embedded

Mode
Yes Yes No No

In-Memory

Mode
Yes Yes No No

Encrypted

Database
Yes Yes No No

ODBC

Driver
Yes No Yes Yes

Sequences Yes Yes No Yes

10

CLOB/BLOB

Compression
Yes No No Yes

Pure Java Yes Yes No No

Footprint

(jar/dll size)

~1.5

MB

~3.0

MB

~4.0

MB

~6.0

MB

Table 1. Comparison of H2DB to other database engines.

Addapted from [18]

As illustrated in Table 1, H2DB competes tightly

with other well-known concurrent DBMSs and takes

advantages in many cases. For instance, H2 database

supports encryption, affords an additional feature to run

just in-memory and can be embedded within

applications. These features, however, are not supported

by MySQL and PostgreSQL. Additionally, Derby

database lacks an ODBC Driver and does not have

support for large objects such as BLOB and CLOB –

features supported in H2 database.

B. Group communication – JGroups

Group communication mechanism aids the

development of distributed systems over a network. As

we need to implement a replicable environment in a

database system connected by network, we use the

JGroups [19] toolkit for reliable messaging. It is

necessary to implement replicas (known as nodes)

which must be capable to exchange messages so that

they can be always updated. JGroups is based on IP

multicast and can aid us to create groups whose nodes

can send messages to each other.

This project was implemented under Java platform so

that we can take advantage of JGroups, since it is also

written entirely in Java. Its main features include [19]:

 Group creation and deletion: it is possible to

create a group with an identifier that contains all

replica instances.

 Joining and leaving of nodes in the group:

replicas can be added into groups at runtime, with

minimum effort.

 Membership detection and notification about

joined/left/crashed group nodes: when one replica

crashes, it may rejoin the group and the others can

send the transactions executed during this absent

period.

 Detection and removal of crashed nodes.

 Sending and receiving of node-to-group reliable

messages (point-to-multipoint): one replica can

send its data item to the group so all the others

replicas can update it.

 Sending and receiving of node-to-node reliable

messages (point-to-point): one replica can send

the updates to another past crashed replica that

rejoined the group. In this case, the recovery

process of one replica is performed.

As seen, JGroups is considered an important

component of the environment that implements all the

communications features through the networked

computers. Therefore it fits perfectly with our needs to

assure the reliable messaging among replica instances.

V. SIMULATION-BASED APPROACH

This section shows the architecture model to

implement database replication. Further it is described

the essential elements of the replication architecture and

how they are implemented and coupled inside H2

database.

A. Architecture Model for Implementation

 The implementation was based on the replication

architecture model for database suggested in [2].

Therefore, it is important to realize the main concepts of

this architecture to understand the implementation.

 This architecture model is essentially composed of

seven elements, though three of them are indeed the core

of replication. Figure 6 illustrates the model for

replication architecture:

11

Figure 6. Replication architecture model. Adapted from [2]

The architecture shown in Figure 6 is based on [2]

and consists of the following blocks:

 The Application, which might be the client tier

and sends requests to database.

 The Driver which affords a standard interface for

the Application tier. The Driver should provide

remote accesses to the database using a low-level

mechanism that ease the communication between

client (application) and server (database).

 The Load Balancer dispatches client requests to

database replicas using a suitable load-balancer

algorithm. Although it is an important component,

the Load Balancer is needless to apply the

replication, namely, we can implement replication

without the Load Balancer. However, it improves

the system performance.

 The DBMS, which holds the database content

and handles remote requests to query and modify

data expressed in standard SQL.

 The Reflector is attached to each DBMS and

allows inspection and modification of on-going

transaction processing.

 The Replicator mediates the coordination among

multiple reflectors in order to enforce the desired

consistency criteria on the replicated database.

This component uses the group communication

mechanism to exchange messages among

replicas.

 The Group Communication supports the

communication and coordination of local

Replicators.

The last 3 blocks are the key components which

works together to achieve the replication. Thus, this

project focuses specifically on these three components

in order to implement a basic database replication

environment.

Essential components of the architecture are the

interfaces among the building blocks, which allow them

to be reused in different contexts or easily switched to

other implementation. This minimizes the coupling and

enhances the system cohesion as well as its modularity.

In order to reach modularity without losing

performance, it is imperative that the system has

replication support from the database engine. The client

interfaces provided by a DBMS do not afford enough

information for replication protocols. The replication

protocols must know details about the engine steps to

perform a transaction in order to achieve good

performance [2]. The interfaces exposed by the

Reflector and Replicators as well as their

implementation are detailed next.

B. Components Implementation: Initialization,

Recovery and Replication

As exposed previously, H2DB is a suitable database

for this project. The architecture relies on such well-

defined interfaces that interact with database

implementation and group communication protocol

using JGroups [19]. This section discusses the main

concepts of implementation, such as initialization

process, recovery and replication components. Figure 7

12

shows the functionality of the replicated DBMS

initialization.

Figure 7. State machine diagram of DBMS initialization

Once the database initiates, a service listens to

database requests. H2DB goes to “Joining to Group”

state (Figure 7), that looks up to the JGroups replica

group. If there is any such group, it will be created and

the replica becomes its leader (master). Otherwise, if

there is such group, database becomes a member of it as

a new replica node within the environment.

After joined the group, database triggers to “Cheking

Updates” state. In that state, it requests to leader updates

from its current state: the leader receives the current

state of a replica, checks if there is any updates to do

and send a list of commands to new replica update its

state in order to accomplish with leader state. This is

part of the recovery synchronization mechanism and

state replica is gathered from a transaction log.

The recovery is done at the time of database startup.

When the DBMS is started on the server, if a replication

group already exists, the new DBMS that failed will join

to this group. At this moment, begins the current state

transmission and all the updates to be performed. This

state is based on the database operation log – which is

implemented in order to build the recovery mechanism.

The log of failed node contains the last operation

performed by this node. Thus, the leader receives it and

compares with his last operation from his log, so that the

leader can send the missing operations to the failed

node.

The communication between the new member and

the leader of the group during the recovery process is

done via unicast. Upon receiving the instructions, the

new member will execute them and update their status

according to the leader's state. Accomplished this

process, the new replica is now updated and ready to

receive new transactions coming from the client.

We developed all replication mechanism for passive

and active replication. The replication components

implemented are described as follows.

Reflector. The Reflector component is based on

architecture model presented in [2]. That component is a

driver connected to the database engine and its role is to

intercept all transactions directed to database engine and

send them to Replicator. Reflector must to be aware of

the replication strategy (i.e. if active or passive), so the

proper replication method can be applied effectively.

Figure 8 shows Reflector interface, providing generic

behavior for any kind of database system, and a

specialized class to perform reflection on H2DB:

ReflectorH2.

13

Figure 8. Class diagram of Reflector component

The intersectSQL is a method that is called when the

interception of SQL instructions in database transaction

engine. This method makes the necessary treatments for

the SQL instructions and verify which replication

strategy will be used to perform the transaction.

The methods doActiveReplication and

doPassiveReplication performs effectively the active

and the passive replication technique, respectively.

Depending on the strategy adopted, the Reflector can

invoke the Replicator instantly or delay it.

The isSqlReplicationSetter is an auxiliary method to

validate if the query is a specific SQL command

recognized just by the database. This command is used

to change the replication strategy at execution time and

is detailed further in this section.

Replicator. Replicator is responsible for

coordinating and interaction among all DBMS replicas,

so it interacts with Reflector through well-defined

interfaces and relies on the group communication

component, as shown in Figure 9.

Figure 9. Replicator architecture. Adapted from [2]

There are four process abstraction built within

Replicator component, presented as follows [2].

 Capture Process receives the events from

Reflector, converts them to appropriate events

within the replicator and notifies the other

processes.

 Kernel Process handles the replication of local

transactions by distributing relevant data and

determining their global commit order.

Additionally, it handles incoming data from

remotely executed transactions.

 Apply Process injects incoming transaction

updates into the local database through the

reflector component. Thus, the communication

between Reflector and Replicator is bilateral.

 Recovery Process intervenes and performs the

recovery of some DBMS replica by other updated

node. It is applied whenever a replica joins or

rejoins the group.

Once the request (and the replication strategy to be

used) is sent to Replicator, in the replication process,

this can provide 1) replication strategy using group

communication protocol, based on a generic interface;

2) a Replicator class; and 3) its interaction with group

communication through Receiver (Figure 10). Receiver

is based on JGroups toolkit, which provides total order

multicast for group communication.

If the request is a write operation (e.g. update/insert

command), Replicator send the transaction to the group;

otherwise (i.e. a query command) it avoids to use group

communication protocol and process the query locally in

14

order to save network traffic. Figure 10 illustrates all the

methods exposed by the Replicator that embraces the

handling of group and the sending and receiving of write

operations.

Figure 10. Class diagram of Replicator component with GC

The method startGroup instantiate a new group in

the environment, if there is no group already created.

The sendToAllNodes operation receives the

transaction and sends it by multicast to all members.

Part of this method can be represented as the Capture

Process of Replicator.

The method receive is part of group communication

mechanism which receive the message (SQL

transaction) sent by a node (replica). It is an

implementation of the method in Receiver component.

Both receive and part of sendToAllNodes methods might

be represented as the Kernel Process of Replicator.

The getLeaderAddress is an auxiliary method. As the

name suggests, it gives the address of the group leader

(also called as primary). It is useful when some replica

needs to perform the recovery process. In this case, the

node obtains the leader address through this method and

asks to the leader for the updates.

Additionally, the getGroupMembers is also an

auxiliary method which returns all the active members

within the group of replicas.

The method executeInstruction can be represented as

the Apply Process of Replicator. It calls the Reflector

again to execute the SQL instruction locally.

The method recovery verifies the necessity of

performs recovery in a DBMS that joined in the group.

It symbolizes the Recovery Process of Replicator.

Finally, to provide dynamic change of replication

strategy, “Current Replication Strategy” component

keeps the current replication strategy, queried by

Reflector. The command bellow can change the

replication strategy:

 SET (ACTIVE | PASSIVE) REPLICATION;

That command is provided as a special SQL

command that allows the changing of current replication

strategy. Reflector process that command and registers

the new strategy on “Current Replication Strategy”.

VI. VALIDATION AND RESULTS

As seen in Section IV, H2DB is a relational and open

source DBMS developed with Java programming

language. To allow our performance evaluation, we

have changed the H2DB architecture in order to use our

middleware at transactions process engine.

As database servers have been relevant to business

and have become more standardized over years,

performance has been the differential factor among

products of varied vendors. Performance benchmarks

are bundles of tasks that are used to quantify the

software performance so that people can measure

quality, time and costs.

This project measures the transactions per minute as

a performance indicator in order to assess the latter

within the H2 database replicated environment. It is also

applied in this project a benchmark tool used for

measuring performance in database systems: TPC-C.

15

A. Description

This section demonstrates all steps made to

corroborate the new version of H2DB (supporting

replication). In the end, there is a discussion of results

comparing the both replication strategies adopted: active

and passive.

Regarding validation of built implementation, the

technique of TPC-C benchmark is used as a means of

producing a specific load on the system in order to

verify the effective compliance of the outlined

objectives. Based on the results retrieved by the

benchmarks, performance measurement from

environment was made in the following three scenarios:

1) Centralized: with only a single H2 database

storing data. In this scenario the benchmarks run

on H2DB in just a single machine with the

database switched in centralized mode.

2) Synchronously replicated (active replication

mode): with two nodes in network supporting H2

database. In this scenario there is a replica of

H2DB communicating with another replica on a

different machine, yet in the same network. The

communication between the replicas is done

through group communication method using

JGroups; the DBMSs are bounded in active

replication mode.

3) Asynchronously replicated (passive replication

mode): with two nodes in network supporting H2

database. In this scenario there is also a replica of

H2DB communicating with another replica on a

different machine, yet in the same network. The

communication between the replicas is done

through group communication method using

JGroups; the DBMSs are bounded in passive

replication mode.

Firstly, the environment features built for testing and

validation are exposed in this Section. Subsequently, it

is discussed the benchmark model (TPC-C) used and its

peculiarities. After, it is presented the execution of

scenarios with charts illustrating the results. Finally,

from the results obtained, a comparative analysis of the

different scenarios is taken in order to draw the

conclusion.

B. Environment Features

Because it is an essential factor in distributed and

ubiquitous computing, heterogeneity and scalability are

designed for the built environment. To perform the

validation of the three scenarios defined, a physical

machine and a virtual machine with different

characteristics have been done towards greater similarity

to real environments of distributed computing.

The environment is compound of a physical machine

with virtual machine (VM) installed. The physical

machine’s features are as follows:

 Dell machine with processor Intel® Core™ i7-

3540M CPU @ 3.00GHz and 4MB Cache L3

 8,0 GB of DDR3 Memory RAM

 500 GB space of hard drive

 Windows 7 Operating System Professional x86

of 64-bit

 Network Adapter Intel® Centrino® Advanced-N

6205

 Java Virtual Machine 6.0 or greater installed

 VMWare Player 6.0.1 installed containing a

virtual machine

The settings of each virtual machine inherited from

the physical machine are as follows:

 Single-Core Processor

 1,5 GB of DDR3 Memory RAM

 8,0 GB space of hard drive

 Windows XP Operating System x64 of 32-bits

http://www.intel.com/content/www/us/en/wireless-products/centrino-advanced-n-6205.html
http://www.intel.com/content/www/us/en/wireless-products/centrino-advanced-n-6205.html

16

 Network adapter in Bridge mode

 Java Virtual Machine 6.0 or greater installed

The virtual machine installed and running under

VMWare was used to simulate the replication over the

synchronous strategy (active replication) and

asynchronous strategy (passive replication). The

network adapter connected and enabled in Bridge mode

allows connection to the physical network and

incorporates it in the same network of physical

Windows 7 machine, as shown in Figure 11:

Figure 11. Architecture environment for validation

On each machine it has been deployed the new

version of replicable H2DB, which has its own console

server to database access and logs reading.

With regard to scalability, the environment also

includes such a feature. If it is desirable to increase the

number of replicas in the whole environment, it is

possible to attach more nodes depending on the needs of

a particular scenario. To do so, simply create and add a

new virtual or physical machine, incorporating it into

the same network of the other nodes, and deploy H2

database in replicable mode into the new machine.

Thus, the new replica will join the group and will be

recognized as a new member - also applying the

replication of transactions sent to all DBMSs. There is

therefore a minimal effort to increase the number of

replicas in the environment, supporting the concept of

system horizontal scalability (scale out).

C. TPC-C Benchmark Model

In order to perform benchmarks for the new version

of H2DB, it was used a worldwide renowned patterns

defined by a non-profit organization, namely,

Transaction Processing Performance Council (TPC).

The purpose of TPC is to define transaction

processing and database benchmarks used by the

industry in pursuance of evaluating the performance of

computer systems [20].

Generally, the TPC creates benchmarks that assess

transaction processing (TP) and database (DB)

performance. These measures provide an inference of

how many transactions a particular system or database

can perform per unit of time. The evaluation of this

project, specifically, measures the number of

transactions per minute (tpm).

In the same way as tpm measure, the TPC presents

and additional measuring entitled tpmC. This metric

concern measures the New-Order transactions (type of

TPC-C transaction which will be described forward) per

minute and the number of orders as it can be fully

processed per minute. During the execution of

benchmarks, we compute the total number of performed

New-Order transactions. Then, we divide this value by

the subtraction of the time that execution finished and

the time it was started. Given this result, we multiply by

60000 which is the absolute value, in milliseconds, of

the desired unit (in this case, minute). Thus, the

benchmark tool can reach an approximate measurement

of tpmC. The equation below shows the formula to

calculate the tpmC:

The nrNO represents the total number of New-Order

transactions executed during the unit of time (one

minute). The tpmC depends strictly on overall system

characteristics – described previously. As a result, all

values obtained in the benchmarks’ execution of this

project also include the tpmC metric and are related to

the environment features adopted.

According to TPC standard, there are some types of

benchmarks to support different needs, such as TPC-

Energy (for measuring and reporting an energy metric in

TPC Benchmarks), TPC-E (for On-Line Transaction

Processing – OLTP – workload developed by the TPC),

17

TPC-H (for ad hoc decision support benchmark), TPC-C

(for a simulation of complete computing environment

where a population of users executes transactions

against a database), among others that can be found in

more details in [20].

As it is required for this project to make the

measuring of transactions against a database, it was

chosen the TPC-C approach [21]. This approach is a

combination of read-only and update transactions that

simulate the intense activities found in complex OLTP

application environments. Moreover, the TPC-C model

represents the activity of most common industry which

must manage, sell or distribute a product or service,

instead of focus in a particular industry activity.

Additionally, TPC-C has five types of transactions

that are performed during the benchmark execution.

These transactions have different characteristics, which

can vary on weight (some are heavier than others) and,

consequently, on the time spent to be performed in the

database in order to simulate a production environment

of data manipulation. Each transaction type belonging to

TPC-C executed in all benchmarks scenarios of this

project is described as follows [21].

New-Order transaction. This is a mid-weight

transaction and it is considered as the backbone of the

workload. It is comprised of data reads and writes which

are frequently executed and has a stringent response

time requirements to fulfill online users’ necessities. As

the name implies, the New-Order transaction consists of

entering a complete business order through a single

database transaction. It is designed to place a variable

load on the system to reflect on-line database activity

that meets to real environment actions.

A new order is done in a single transaction with the

following steps:

1. Creation of an order header containing:

 2 row selections with data retrieval;

 1 row selection with data retrieval and update;

 2 row insertions.

2. Request a variable number of items (average

items_cnt = 10) to be included in the order header

created, containing:

 (1 × items_cnt) row selections with data

retrieval;

 (1 × items_cnt) row selections with data

retrieval and update;

 (1 × items_cnt) row insertions.

Payment transaction. This is a light-weight

transaction comprised of data reads and writes which are

frequently executed. It has also a stringent response time

requirements to fulfill online users’ necessities, as it

does not include primary key access to the table of

customers. As the name implies, the Payment business

transaction updates the customer's balance and reflects

the payment on the district and warehouse sales

statistics.

The Payment transaction enters a customer's payment

with a single database transaction and performs about 3

or 5 selections and 1 row insertion.

Order-Status transaction. This is a mid-weight

transaction comprised of read-only database transaction

with a low frequency of execution. It has also a low

response time requirements to fulfill online users’

necessities, as it does not include primary key access to

the table of customers. As the name implies, the Order-

Status business transaction queries the status of a

customer's last order.

The Order-Status transaction performs about 2 or 4

rows selections with data retrieval to find the customer;

and 1 × items_per_order (average items_per_order =

10) rows selections to check the delivery date of each

item on the order requested.

Delivery transaction. This type could be comprised

of one up to 10 database transactions. It has a low

frequency of execution and does not necessary need to

be completed within a stringent response time as a

requirement. This transaction consists of processing a

batch of 10 new (not yet delivered) orders. Each order is

processed (delivered) in full within the scope of a read-

write database transaction.

The Delivery transaction delivers one outstanding

order (average items-per-order = 10) for each district in

the warehouse using one or more (up to 10) database

transaction. This process includes, for each order: 1 row

selection with data retrieval; 1 row selection with data

update; and 1 row deletion.

18

Stock-Level transaction. This is a heavy read-only

database transaction with a low frequency of execution.

It does not necessary need to be completed within a

stringent response time as a requirement and has relaxed

consistency requirements. This transaction determines

the number of recently sold items that have a stock level

below a specified threshold.

As seen, the TPC concerns a commonly understood

group of transactions in the business sphere, such as

commercial exchange of goods, services or money.

Hence, the transactions would include the updating to a

database system for an inventory control (goods), airline

reservations (services), banking system (money), among

others. Furthermore the TPC-C model addresses the

basic needs for measuring performance on database

systems, including patterns and a set of different

transaction types. For this reason, we have been using

the TPC-C as a means to measure performance over H2

database in replication approaches and even in

centralized mode.

D. Execution of Scenarios and Results

The benchmarks were executed according the

scenarios described previously. The database tables

required by TPC-C model [21] were created in H2DB

and then we populated the tables with 598.587 rows.

The time taken for each benchmark was 60.000

milliseconds. Moreover, for each scenario was opened a

terminal where all transaction types (New-Order,

Payment, Order-Status, Delivery and Stock-Level) were

performed during 1 minute (60.000 milliseconds).

We have considered, in percentage, the following

transaction weight:

 New-Order: 45%

 Payment : 43%

 Order-Status: 4%

 Delivery: 4%

 Stock-Level: 4%

In centralized mode, a range of transactions were

executed over H2DB in order to measure the total time

that each transaction type took to be fully processed in

the DBMS. Graphic1 illustrates the results of these

measurements:

Graphic1. Benchmark results: Centralized

In passive replication the database was switched to

passive mode. Then we opened a new terminal to run

the benchmarks. We have also measured the total time

of each transaction type – illustrated in Graphic2.

Graphic2. Benchmark results: Passive Replication

Finally, active replication was switched in H2DB.

Then we also opened a new terminal to run the

benchmarks and measure the total time of each

transaction type, as shown in Graphic 3.

Graphic 3.Benchmark results: Active Replication

10873

37156

4578

7623

1201

0 10000 20000 30000 40000

Delivery Total

New-Order Total

Order-Status Total

Payment Total

Stock-Level Total

Execution Time (ms)

7876

43505

1964

6401

246

0 10000 20000 30000 40000 50000

Delivery Total

New-Order Total

Order-Status Total

Payment Total

Stock-Level Total

Execution Time (ms)

6646

43704

3170

4755

2121

0 10000 20000 30000 40000 50000

Delivery Total

New-Order Total

Order-Status Total

Payment Total

Stock-Level Total

Execution Time (ms)

19

Because the New-Order transaction is a mid-weight

transaction and it is considered as the backbone of the

workload, it spends more time executing than the others.

Even having similar weight to the Payment transaction

(45% for New-Order and 43% for Payment), the New-

Order lasted a significantly time longer. It is explained

because Payment transaction is a light-weight

transaction.

Based on TPC-C Ben chmarks executed over H2DB

in centralized and replicable mode, we can demonstrate

the behavior of different scenarios and evaluate the

results. As expected, the centralized database could

handle a significantly larger number of transactions

compared with the same environment and database in

replicable mode. Furthermore, the passive replication

performed more transactions than active replication

during the same period of time.

Three benchmarks execution were done for each

database mode. Table 2 shows all results obtained in

transactions per minute (tpm).

 Centralized Passive Rep. Active Rep.

Benchmark 1 5.381 tpm 783 tpm 321 tpm

Benchmark 2 5.736 tpm 673 tpm 482 tpm

Benchmark 3 6.095 tpm 531 tpm 382 tpm

Average 5.737,33 662,33 395,00

Standard

Derivation
357,00 126,34 81,28

Confidence
Interval

403,98 142,96 91,98

Table 2. Results of benchmarks execution

We calculated the average tpm for each strategy in

order to find the standard derivation and the confidence

interval of 95%. From values extracted we can conclude

that in 95% of benchmarks that could be executed in

active mode, the transaction per minute can vary from

303tpm to 487tpm. On the other hand, the passive

replication can vary from 519 to 805. Graphic 4 shows

the average of transaction per minute for each strategy

and the error bar according to the confidence interval

calculated.

Graphic 4. Confidence interval of average results

We conclude that if it is necessary to execute more

transactions (within a period of time) and give a faster

reply to the client, our replicated database can be set up

to apply the passive replication, since this is the

replication strategy which executes more transactions

per minute – as shown in Graphic 4. The passive

replication however has a longer response time for

failures when compared to active replication.

On the other hand, if it is needed an environment that

all replicas are 100% of time synchronized and the

clients are able to send requests to any replica (update

anywhere model, presented previously), we can switch

at runtime to set the active replication with no effort, as

described in Section IV.

VII. CONCLUSIONS AND FUTURE WORK

This work aims at exploring an approach for

adaptability in the context of replicable database

environments. It shows that database replication is a

complex solution that involves different decisions to

every particular problem. Although it might be hard and

expensive to apply, if developed in the right

circumstances for a particular issue, the replication can

be fitted perfectly as a good solution, enhancing both

performance and high availability for fault tolerant

systems and scenarios that require high scalability.

centralize
d

passive active

average 5.737,33 662,33 395,00

 -

 1.000,00

 2.000,00

 3.000,00

 4.000,00

 5.000,00

 6.000,00

 7.000,00

Average (tpm)

20

Thus, this project encompasses the developing of a

middleware, for database replication, based on a generic

architecture and adaptable to different replication

strategies. Figure 12 illustrates the scheme proposed for

a cloud environment within the replication middleware.

Figure 12. Proposed scheme for a cloud environment

As shown in Figure 12, the application can define the

desired service level for database nodes. This means that

an application is allowed to switch at runtime the

replication level. If it is suitable for the application to

have a passive environment at a certain instant,

application can send an operation to database

middleware defining the passive mode. On the other

hand, there could be another situation that is preferable

to have an active environment, so the application is able

to interact with the middleware which can change it at

execution time.

Furthermore, some benchmarks based on TPC-C [21]

model were executed over the replicated database

environment in order to validate the implementation. As

a result, we calculated the tpm (transactions per minute)

and obtained the average, standard derivation and

confidence interval. Some charts were drawn to

illustrate the results and compare them to each strategy

that was implemented. The experimental results reported

here point out that the building of a replication

environment in H2DB is consistent and the processing

times correspond to what was expected – according to

the foundation studies of replication strategies.

Finally, a proposal for future works is an

implementation focused on commercial environment of

cloud computing which the choice of replication

strategy is not regarding to the application that uses the

database or any other user (such as a database

administrator). Instead, the cloud environment should be

able to adjust automatically the database replication

strategy based on the computational resources

measuring. There should be a component whose role is

to measure a set of resources that might impact the

performance of the whole system, such as:

 CPU time;

 Memory usage;

 Hard disk space;

 Network throughput;

 Input/output operations;

 Electrical power, etc.

For instance, if there are plenty of available

resources, the cloud environment can set the active

replication; if not, it can switch for passive replication

automatically in order to minimize the use of network

resources and, moreover, use fewer number of replica

nodes – since this strategy requires less resource

consumption.

REFERENCES

[1] “The Information Society. From Theory to Political

Practice”. Information Society Research Institute, First

edition. Gondolat Kiadó, Budapeste, 2008.

[2] A.T.C. Jr., J. Pereira, L. Rodrigues, N. Carvalho, and R.

Oliveira. Practical Database Replication. Replication

Theory and Practice, B. Charron-Bost, F. Pedone, A.

Schiper, Cap. 13. Springer, 2010.

[3] M. Armbrust , A. Fox , R. Griffith , A. D. Joseph , R.

Katz , A. Konwinski , G. Lee , D. Patterson , A. Rabkin ,

I. Stoica , M. Zaharia. A view of cloud computing.

Communications of the ACM, v.53 n.4, April 2010

[4] X. Defago, A. Schiper, and Peter Urban. Total order

broadcast and multicast algorithms: Taxonomy and

survey.ACM ComputingSurveys, Dec 2004.

[5] P. Tomar,Megha. An Overview of Distributed Databases.

International Journal of Information and Computation

Technology. International Research Publications House.

Volume 4, Number 2, p. 207-214, 2014.

[6] R. Elmasri, S. B. Navathe. Fundamentals of Database

Systems. Pearson. 6 ed. 2010.

[7] A.T.C. Jr. Practical Database Replication, Universidade

do Minho, Escola de Engenharia, Portugal, 2010.

[8] R. Renesse and R. Guerraoui. Replication Techniques for

Availability. Replication Theory and Practice, B.

21

Charron-Bost, F. Pedone, A. Schiper, Cap. 2. Springer,

2010.

[9] J. Gray, P. Helland, P. O’ Neil, D. Shasha. The dangers

of replication and a solution. ACM SIGMOD

International Conference on Management of Data, p.

173-182, June 1996, Montreal, Quebec, Canada.

[10] Oracle Corporation. Database Replication and

Integration. Available at

http://www.oracle.com/technetwork/database/features/da

ta-integration/index.html

[11] Microsoft Corporation. SQL Server Replication.

Available at http://technet.microsoft.com/en-us/library/

ms151198.aspx

[12] P. Jalote,Fault Tolerance in Distributed Systems,

Prentice Hall, Englewood Cliffs, New Jersey, 1994.

[13] A. Avizienis, J.C. Laprie, B.Randell, and C.Landwehr,

Basic Concepts and Taxonomy of Dependable and

Secure Computing, IEEE Transactions on Dependable

and Secure Computing, vol. 1, no. 1, pp. 11-33, Jan

2004.

[14] A. Schiper, Group communication: from practice to

theory, Proceedings of the 32nd conference on Current

Trends in Theory and Practice of Computer Science,

2006, Měřín, Czech Republic

[15] G. Samaras, K. Britton, A. Citron, C. Mohan. Two-Phase

Commit Optimizations and Tradeoffs in the Commercial

Environment, Proceedings of the Ninth International

Conference on Data Engineering, p.520-529, April 1993

[16] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G.

Alonso. Understanding Replication in Databases and

Distributed Systems. In IEEE ICDCS, 2000

[17] JBoss Application Server by Redhat. Available at

http://jbossas.jboss.org

[18] H2 Database Engine. Available at http://h2database.com

[19] JGroups – A Toolkit for Reliable Messaging by Redhat.

Available at http://www.jgroups.org

[20] TPC – Transaction Processing Performance Council ™.

Available at http://www.tpc.org

[21] TPC BENCHMARK™ C Standard Specification

Revision 5.11, February 2010. Available at

http://www.tpc.org/tpcc/spec/tpcc_current.pdf

Bruno Cesar Neves de Oliveira received his bachelor degree

of Computer Science at UNIFACS – University of Salvador

in 2011. He works in the field of system’s development as a

System Analyst since 2009. Currently, works at Informática

El Corte Inglés in Salvador, Bahia, Brazil and is attending the

post-graduation course of Specialization in Distributed and

Ubiquitous Computing at Federal Institute of Bahia (IFBA).

