
Do Search-Based Approaches Improve the Design of
Self-Adaptive Systems ? A Controlled Experiment

Sandro Santos Andrade
GSORT Distributed Systems Group

Federal Institute of Education, Science,
and Technology of Bahia. Salvador-Ba. Brazil

Email: sandroandrade@ifba.edu.br

Raimundo José de Araújo Macêdo
Distributed Systems Laboratory (LaSiD)

Department of Computer Science
Federal University of Bahia. Salvador-Ba. Brazil

Email: macedo@ufba.br

Abstract—Endowing software systems with self-adaptation ca-
pabilities has shown to be quite effective in coping with uncertain
and dynamic operational environments as well as managing the
complexity generated by non-functional requirements. Nowadays,
a large number of approaches tackle the issue of enabling self-
adaptive behavior from different perspectives and under diverse
assumptions, making it harder for architects to make judicious
decisions about design alternatives and quality attributes trade-
offs. It has currently been claimed that search-based software
design approaches may improve the quality of resulting artifacts
and the productivity of design processes, as a consequence of
promoting a more comprehensive and systematic representation
of design knowledge and preventing design bias and false intu-
ition. To the best of our knowledge, no controlled experiments
have been performed to provide sound evidence of such claim
in the self-adaptive systems domain. In this paper, we report
the results of a quasi-experiment performed with 24 students of
a graduate program in Distributed and Ubiquitous Computing.
The experiment evaluated the design of self-adaptive systems
using a search-based approach, in contrast to the use of a style-
based non-automated approach. The results show that search-
based approaches can improve the effectiveness of resulting
architectures and reduce design complexity. We found no evidence
regarding the method’s potential for leveraging the acquisition
of distilled design knowledge by novice software architects.

I. INTRODUCTION

Increasingly demands for guaranteeing scalability, depend-
ability, energy-efficiency, and performance in dynamic en-
vironments have challenged the way we develop software
systems. Elastic data storage services, energy-aware mobile
systems, self-tuning databases, and reconfigurable network
services are some of the application domains in which self-
adaptive mechanisms play a paramount role [1]. Such scenarios
are usually characterized by incomplete knowledge about
user requirements, workloads, and available resources. As a
consequence, committing to a particular solution in design time
may yield suboptimal architectures, which easily degrade the
service when conditions deviate from those previously defined.

A self-adaptive (SA) system continuously monitor its own
behavior and its operating environment, adapting itself when-
ever current conditions prevent it from delivering the expected
quality of service [2]. SA systems usually comprise two parts:
a managed element and a managing element [3]. The managed
element provides functional services to the user, operating in a
potentially dynamic and uncertain environment. The managing
system is responsible for adapting the managed element,

mostly by using a particular implementation of an adaptation
loop. The MAPE-K approach [4] is a widely accepted ref-
erence architecture for adaptation loops. It defines the basic
components for the loop’s tasks of Monitoring, Analyzing,
Planning, and Executing; performed with the support of a
Knowledge Base.

The many approaches for self-adaptation available nowa-
days adopt different mechanisms for the aforementioned tasks.
Reflexive middleware platforms, graph grammars, intelligent
agents, policy-based approaches, self-organizing structures,
and control theory are some of the currently adopted under-
pinnings for enabling self-adaptation [5]. Such large solution
space, along with the intricate problem space that characterizes
the SA systems domain, make it harder for architects to
judiciously evaluate all available design alternatives and make
well-informed decisions on quality attributes trade-offs. As
a consequence, false intuition, design bias, time-to-market
constraints, and/or incomplete knowledge about the solution
space may lead to suboptimal architectures, which do not fully
realize the self-adaptation requirements at hand.

Over the past twelve years, Search-Based Software En-
gineering (SBSE) [6] has provided promising approaches for
tackling the aforementioned issues in areas such as require-
ments engineering, design, testing, and refactoring, just to
mention a few. SBSE claims that the majority of issues in
such areas are indeed optimization questions and that the
software’s virtual nature is inherently well suited for search-
based optimization [7]. In particular, substantial work towards
search-based software design [8] advocate the benefits of SBSE
in finding out subtle effective designs and providing well-
informed means to reveal quality attributes trade-offs.

To the best of our knowledge, the first effort in applying
search-based approaches to the design of SA systems is that
proposed by us in [9]–[11]. In such work, we provide a meta-
modeling infrastructure for defining domain-specific design
spaces which systematically capture the domain’s prominent
design dimensions, their associated variation points (alternative
solutions), and the architectural changes required to realize
each solution. The goal is to support the automated redesign
of an initial model, endowing it with additional capabilities
from the application domain at hand. Each domain-specific
design space entails a set of quality metrics that evaluate each
candidate architecture regarding different attributes.

We have been using such approach to enable the automated

design space inception (a)

design space usage (b)

Sensors/Actuators Capabilities + System Dynamics

Create annotated initial system model Select final candidate from Pareto-front

Final self-adaptive system architecture

Validate SA:DuSE design dimension instances Optimize architecture

Initial system model (non-adaptive)

Optimization ParametersSA:DuSE (domain-specific DuSE instance)

App-specific design space instance Pareto-optimal architectures

repeat as necessary

Specify domain-specific UML profile Define domain-specific quality metrics using DuSE languageCreate domain-specific design space using DuSE language

Supports the definition of Candidates are evaluated by

Domain-Specific Design Knowledge

Fig. 1. Overview of our architecture design approach. In the design space inception stage (a), domain experts use the DuSE’s constructs for specifying a
domain-specific design space (degrees of freedom, their corresponding alternative solutions, and the architecture extensions required to reify each solution).
Henceforth – in the design space usage stage (b) – architects submit initial models to the optimization engine, which searches for those (near-)optimal extensions
revealing design trade-offs. A particular design space instance – SA:DuSE – enables the use of such infrastructure in the self-adaptive systems domain.

design of managing elements for initial (non-adaptive) systems
such as web servers and MapReduce distributed architectures
[12]. Since even small input models usually span huge design
spaces, we also provide a domain-independent multi-objective
optimization engine. Such engine currently relies on the
NSGA-II algorithm [13] to find out a set of Pareto-optimal [14]
candidate architectures. All these solutions represent optimal
architectures, differing only in which quality metric they favor.

In this paper, we report the results of a quasi-experiment
[15] performed with 24 students of a graduate program in Dis-
tributed and Ubiquitous Computing. We evaluated the design
of SA systems using our search-based approach, in contrast to
using a style-based non-automated approach. The experiment
goal was to analyze the design of SA systems, for the purpose
of evaluating the search-based design approach we propose
and a design process based on architecture styles catalogs,
with respect to the effectiveness and complexity of resulting
architectures, as well as the method’s potential for leveraging
the acquisition of distilled design knowledge by novice SA
systems architects, from the viewpoint of researchers, and
in the context of graduate students endowing systems with
self-adaptation capabilities.

The quasi-experiment is characterized as a blocked subject-
object study with a paired comparison design. Two UML
models representing a web server and a MapReduce distributed
architecture are used as experiment objects and two treatments
(search-based approach and style-based approach) are consid-
ered for the design method factor (independent variable). We
are interested in evaluating the impact of the adopted design
method on three dependent variables: the effectiveness and
complexity of resulting architectures, as well as the method’s
potential for leveraging the acquisition of distilled design
knowledge by novice architects. We use the Generational
Distance metric [14], [16] to assess effectiveness in terms of
how far the architectures designed by the subjects are from
a previously determined Pareto-optimal set of architectures.
Design complexity is evaluated by using the Component Point
approach [17] while a questionnaire with multiple choice
questions evaluates the method’s potential for leveraging the
acquisition of design knowledge. All the material used in the
experiment is available at http://wiki.ifba.edu.br/tr-ce012014.

The remainder of this paper is organized as follows. Section
II presents an overview of the experiment. Section III explains
the experiment objects, the hypotheses being investigated, the
adopted measurement approach, and the experiment design. In
section IV we analyze and discuss the results, while threats to
validity are identified in section V. Finally, section VI presents
related work while conclusions and venues for future work are
presented in section VII.

II. EXPERIMENT DEFINITION

Designing effective architectures for SA systems is a
challenging task. It requires architects become familiar with
the intricacies of both the problem space (so that accurate
and realistic self-adaptation requirements can be elicited) and
solution space (in order to adopt the most effective adaptation
strategy/mechanism for the problem at hand). That involves
deciding on self-adaptation goals; system and environment
monitoring mechanisms; measurement noises and uncertain-
ties; unanticipated/unforeseen adaptations; diverse control ro-
bustness degrees; change enacting mechanisms; and adaptation
temporal predictability, just to mention a few [1], [18], [19].

A number of efforts from the software engineering for SA
systems community [5] have addressed the issue of providing
principled engineering approaches, leveraging the systematic
capture of design knowledge and enabling the early reasoning
of self-adaptation quality attributes. Our approach – named
DuSE – joins such endeavor by providing: i) an infrastructure
for systematically representing distilled architecture design
knowledge for a given application domain (design space); ii)
a domain-independent architecture optimization engine as the
underlying mechanism for explicitly eliciting design trade-offs
(conflicting quality attributes); and iii) a concrete design space
for the SA systems domain.

As depicted in Fig. 1, a concrete design space and its
quality attributes are specified by experts once per application
domain (design space inception stage) by using the DuSE
modeling language. A supporting UML profile is also defined
for that domain, enabling the annotations that drive the auto-
mated design process. A design space (e.g., for networked and
concurrent systems) is defined as a set of n design dimensions

http://wiki.ifba.edu.br/tr-ce012014

representing specific design concerns in such a domain (e.g.,
concurrency strategy and event dispatching model).

Each design dimension entails a set of variation points,
representing alternative solutions for such a concern (e.g.,
leader-followers or half-sync/half-async; for the concurrency
strategy dimension). A variation point describes the elements
(architectural extensions) that must be added to the initial
model in order to realize such particular solution. Therefore, a
candidate architecture (a location in such n-dimensional space)
is formed by the initial model extended with the merge of
all architectural extensions provided by all involved variation
points. Validation rules, defined per variation point, support the
automatic detection of invalid architectures. Once a concrete
design space is defined, architects can submit initial models to
manual design space exploration or rely on the multi-objective
optimization engine we provide (design space usage stage).

Each design dimension holds an OCL expression that relies
on the associated UML profile’s annotations to detect, in the
initial model, the architectural loci that demand decisions about
such concern. For instance, an initial model may require the
choice of particular control strategies for two different service
components. Therefore, two instances of the control strategy
design dimension are created to capture the decisions for those
architectural loci. As a consequence, huge design spaces may
easily be spawned even for small input models, motivating the
adoption of meta-heuristics and multi-objective optimization
approaches. The domain-independent optimization engine we
provide handles all required steps to forge candidate architec-
tures for a given set of design space locations, evaluate their
quality regarding the attributes defined for the design space,
and find out a set of Pareto-optimal architectures. Further
information about the DuSE meta-model and its architecture
optimization engine may be found in [9], [10].

The aforementioned infrastructure provides the underpin-
nings of our SA systems design approach. We have speci-
fied a particular DuSE instance (SA:DuSE) that captures the
most prominent degrees of freedom and quality attributes
when designing adaptation loops based on feedback control
[20]. Currently, SA:DuSE yields architectural extensions re-
garding six different control laws (P, PI, PID, static state
feedback, precompensated static state feedback, and dynamic
state feedback), seven empirical tunning approaches (four
Chien-Hrones-Reswick variations, Ziegler-Nichols, Cohen-
Coon, and LQR), three mechanisms for control adaptation
(gain-scheduling, model-reference, and model-identification),
and three different control loops deployment arrangements
(global, local control + shared reference, and local control
+ shared error). In addition, four quality metrics related to
control overhead, average settling time, average maximum
overshoot, and control robustness are also available. Due to
space limitations, we omit here a thorough description of
SA:DuSE dimensions, its corresponding variation points, and
quality metrics. Further information may be found in [10].

Our approach has been fully implemented in a supporting
tool named DuSE-MT1, developed using the C++ program-
ming language and the Qt cross-platform toolkit2. DuSE-
MT is a meta-model agnostic tool we develop in order to

1http://duse.sf.net
2http://qt-project.org

TABLE I. OVERVIEW OF THE 32H COURSE IN WHICH THE
EXPERIMENT WAS UNDERTAKEN.

Part Day Activity

Lectures

1 Self-Adaptive Systems Foundations (motivation, MAPE-K
reference architecture, current approaches, challenges)

2 Feedback Control Introduction (control goals, control
properties, fixed gain SISO approaches)

3 Feedback Control (MIMO and adaptive approaches)
4 Self-Adaptive Systems - Case Studies

Exam
and
Training

5 First hour: discussion
Next 3h: Pen and paper exam

6 First hour: exam discussion
Next 3h: Training (DuSE-MT and architectural styles catalog)

Experiment

7 First 110min: Tests #1 and #2
Next 110min: Tests #3 and #4
Next 20min: Tests #5 and #6 (questionnaire)

8 First 110min: Tests #7 and #8
Next 110min: Tests #9 and #10
Next 20min: Tests #11 and #12 (questionnaire)

support general software modeling activities and, in particular,
the automated design process we propose. The NSGA-II
evolutionary algorithm [13] is currently used as optimization
backend, but other approaches can be easily adopted in the
future thanks to the DuSE-MT’s plugin-based architecture and
the optimization engine’s internals we have designed.

We have been comparing the quality of MapReduce elastic
architectures generated by our approach with real implemen-
tations of such solutions in a cluster running Apache Hadoop
v2.33. The goal is to evaluate to which extent the predicted
quality properties are indeed observed in real prototypes. As a
complementary evaluation effort, in this work we look for any
empirical evidence supporting the claim that search-based ap-
proaches improve the effectiveness and reduce the complexity
of SA systems architectures. Furthermore, we want to know
whether search-based approaches leverage the acquisition of
distilled design knowledge by novice architects.

III. EXPERIMENT PLANNING

The experiment took place as part of a 32 hours course
on Software Engineering for Distributed Systems, arranged in
eight classes (four hours each) along four weeks. As presented
in Table I, the course was split in three parts: lectures, exam
and training, and experiment.

In the first four classes, students were exposed to the
foundations of SA systems and feedback control, as well as to
the SISO (Single-Input Single-Output) and MIMO (Multiple-
Input Multiple-Ouput) feedback control strategies [20] more
widely adopted in SA systems. It is worth mentioning that
all students had previously undertaken a 32 hours course on
Software Architecture and Software Modeling. Roughly half
of them work as software developers/designers, while the re-
maining have a stronger background in network administration.
We try to insulate the effect of this factor by using blocking
techniques as described in subsection III-D. Furthermore, no
explicit guidance about self-adaptation quality attributes trade-
offs was given during the lectures, since such an aspect is part
of the hypotheses investigated herein.

In the 5th day, we conducted an one hour discussion
about the matter, followed up by a three hours exam where

3http://hadoop.apache.org

http://duse.sf.net
http://qt-project.org
http://hadoop.apache.org

students used pen and paper to answer open-ended questions.
In the 6th day, we discussed the exam results and presented
a 3 hours training session about the DuSE-MT tool and the
architecture styles catalog for SA systems we developed for
this experiment.

The experiment took place in the last two days of the
course. Students were randomly assigned to two equal size
groups, blocked by their stronger technical background (see
subsection III-D). Since we undertook the experiment as a
blocked subject-object study with three objects (web server
initial model, MapReduce architecture initial model, and ques-
tionnaire) and two treatments (search-based approach and
style-based approach), a total of twelve tests were undertaken
(presented in Table II and discussed in subsection III-D).
All design tests aimed at extending an initial model with a
SA mechanism which regulates a performance metric, while
yet minimizing the settling time, maximum overshoot, and
control overhead. Both groups used DuSE-MT as the design
tool, but all functionalities regarding design space navigation
and architecture optimization were turned off when using the
style-based approach as treatment. Conversely, students had
no access to the style catalog when using the search-based
approach. We would like to emphasize that the experiment was
not intended to investigate design productivity and fault den-
sity, since those aspects are obviously favored when adopting
automated design approaches.

A. Design Objects

The experiment’s design tests aimed to create managing
elements (adaptation loops) for two distinct managed elements:
a web server and a MapReduce distributed architecture [12].
Such managed elements were used as experiment objects and
are depicted in Fig. 2a and Fig. 2b as components with the "in-
put model elements" key. Experiment subjects were expected
to extend such input models with a particular feedback loop
design that produces short settling times, minimum overshoot,
and low control overhead. Fig. 2 shows two examples of such
loops as components with the "added elements" key. We chose
these experiment objects because they constitute two self-
adaptation scenarios widely investigated nowadays and pose
different design challenges: MIMO local control for the web
server case study vs. SISO nested control in a distributed
environment for the MapReduce architecture case study.

The web server model (WS) – depicted in Fig. 2a
– entails a single component providing four interfaces:
two for monitoring purposes (IAvgCPUUtilization
and IAvgMemUtilization) and two for adjusting
parameters that directly impacts the measured outputs
(IKeepAliveTimeout and IMaxRequestWorkers).
The goal is to retain web server’s CPU and memory utiliza-
tion as close as possible to the specified reference values,
by simultaneously adjusting the number of threads serving
HTTP requests (via IMaxRequestWorkers interface) and
the amount of time the server will wait for subsequent requests
on a given thread (via IKeepAliveTimeout interface).

The MapReduce architecture model (MR) – depicted in
Fig. 2b – describes a distributed computing infrastructure
(cluster) where an array of n nodes stores and analyzes huge
datasets. The cluster infrastructure orchestrates the parallel

«processcomponent»
ws:WebServer

{tfNum(-0.11*z)}
{tfDen(1.6*z+0.6)}

IMaxRequestWorkers

IAvgCPUUtilization

IKeepAliveTimeout

IAvgMemUtilization

«controller»
wsCtrl:PIDController[n]

{kp(0.15), ki(0.76), kd(0)}
{samplingTime(1000)}

= input model elements = added elements = data flow

(a)

«processcomponent»
cluster:ElasticCluster

IClusterUtilizationIMaxNodes

«controller»
clusterCtrl:PIDController

{kp(0.75), ki(0.26), kd(0.1)}
{samplingTime(300000)}

«processcomponent»
nm:NodeManager[n]

{tfNum(-0.21*z)}
{tfDen(1.9*z+0.2)}

IMaxMapTasks
IAvgRespTime

«controller»
nCtrl:PIDController[n]

{kp(0.22), ki(0.48), kd(0)}
{samplingTime(1000)}

(b)

Fig. 2. Experiment objects (input model elements only): web server model
(a) and MapReduce architecture model (b). The added elements exemplify the
architectural extensions to be designed by the experiment subjects, either by
applying the architectural styles catalog (reference approach) or by adopting
our automated design space exploration mechanism (intervention approach).

execution of a Map function for each data block stored in
cluster’s nodes and combines all Map’s outputs to form the
Reduce function’s input [12]. Apache Hadoop [21] is a well-
established open source implementation of the MapReduce
programming model, whose performance may be fine-tuned
through nearly 190 configuration parameters. Although de-
fault values for such parameters are already provided by
Hadoop, improvements of 50% in performance have been
observed in properly configured setups [22]. In spite of that,
Hadoop provides no services for parameter self-optimization
or feedback control loops. The model we present in Fig. 2b
entails two nested controllable components: NodeManager
and ElasticCluster. Each cluster machine runs the
NodeManager service, which may have its partial job’s
average response time (measured via IAvgRespTime in-
terface) regulated by adjusting the maximum number of
map tasks simultaneously executing in that host (Hadoop’s
mapreduce.tasktracker.map.tasks.maximum pa-
rameter, changed via IMaxMapTasks interface). Ad-
ditionally, the overall cluster utilization (measured via
IClusterUtilization interface) may also be regulated
by adjusting the number of cluster hosts serving the job (via
IMaxNodes interface).

B. Variables Selection

In this quasi-experiment, we are interested in analyzing
the impact of the adopted design method on three dependent
variables: the effectiveness of the resulting managing element,
the complexity of managing element’s architecture, and the
method’s potential for promoting the acquisition of insights

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.1

0.2

0.3

0.4

0.5

0.6

d2i

r

Average settling time (min)

A
ve

ra
ge

m
ax

im
um

ov
er

sh
oo

t
(%

)
All candidate architectures

Reference Pareto-front P∗

Subject generated Pareto-front Q

Subject generated style-based architecture r

Fig. 3. Example of reference Pareto-front P ∗ and Generational Distance
(GD) metric. GD finds the average Euclidean distance from each i-th solution
in Q to the nearest solution in P ∗. The lower the GD value, the more effective
are the architectures regarding self-adaptation quality attributes. The style-
based architecture r is shown as more effective than those produced by the
search-based approach. That is one of the null hypotheses investigated herein.

and refined experience about quality attributes trade-offs in-
volved in SA systems design. This subsection describes the
metrics we adopted to quantify such variables.

1) Measuring Effectiveness (Generational Distance): we
quantify the effectiveness of resulting feedback control loops
in terms of how close their quality attributes are from a set
of Pareto-optimal solutions previously obtained. Since meta-
heuristics-based approaches – like ours – do not guarantee
global optimality, we performed a set of 50 optimization runs
and calculated the reference Pareto-front P ∗ of the union
of all runs’ outputs. A Pareto-front is a set of solutions for
which it is impossible to make any other architecture better
off without make at least another one worse. We assume that
P ∗ (triangle path in Fig. 3) is a nice representative of the most
effective solutions and constitutes a reasonable reference value
for evaluating how effective are the architectures designed by
the experiment subjects. We have done such procedure for both
the objects (WS and MR) used in the experiment, producing
the P ∗WS and P ∗MR reference Pareto-fronts.

The Generational Distance (GD) [14], [16] is a widely used
metric to evaluate closeness between two Pareto-Fronts Q and
P ∗. The metric finds an average distance of the solutions of
Q (or r) from P ∗, as follows:

GD =
(
∑|Q|
i=1 d

p
i)

1/p

|Q|
; where d2i =

|P∗|
min
k=1

√√√√ M∑
m=1

(f
(i)
m − f∗(k)m)2

Any Lp-norm can be used in Generational Distance. For p = 2
as described above, d2i is the Euclidean distance between the
solution i ∈ Q and the nearest member of P ∗. We chose
the Generational Distance because it is more suitable than
alternatives like Error Ratio and Set Coverage [14] when

comparing disjoint Pareto-fronts. Furthermore, its evaluation
can be performed with minimal computational costs.

As for designs produced with the style-based approach
(e.g., solution r in Fig. 3), their corresponding location in
objective space (quality metrics values) were first calculated
and then compared to the reference Pareto-front using Gen-
erational Distance. Note that a Pareto-front Q obtained with
the search-based approach (e.g., square path in Fig. 3) is
not necessarily as effective as the reference Pareto-front P ∗,
because of the inherent randomness in the adopted evolutionary
multi-objective optimization approach (NSGA-II).

Although r is shown, in Fig. 3, more effective than any
solution in Q, we believe that this is unlikely to happen in
designs undertaken by architects with no previous experience
in SA systems. Therefore, we look, in this experiment, for
any evidence that supports/rejects our claim that search-based
approaches may improve the effectiveness of such designs.

2) Measuring Complexity (Component Point): the second
dependent variable we focus in this experiment is design
complexity, since it directly impacts the development effort re-
quired to realize the proposed architectures. We used the Com-
ponent Point (CP) approach [17] to quantify such an aspect,
motivated by its original conception towards the measurement
of UML models and by the existence of empirical evidence
regarding its validity and usefulness [17]. CP provides the
means to measure design complexity in terms of component’s
interfaces complexity and component’s interaction complexity.
We define the complexity CCc for a component c as:

CCc = IFCIc + ITCIc =
IFCc
nc

+
ITCc
mc

IFCIc is the Interface Complexity per Interface, defined as
the component’s Interface Complexity (IFCc) divided by the
number of component’s provided interfaces (nc). Similarly, the
Interaction Complexity per Interaction (ITCIc) is defined as
the component’s Interaction Complexity (ITCc) divided by the
number of component’s interactions (mc). IFCc and ITCc,
in their turn, are defined as follows.

The first step when calculating IFCc is classifying each
interface of a component into two types: ILF (Internal Logical
Files) or EIF (External Interface Files). ILF interfaces are those
whose operations change attributes of other interfaces, while
the remaining interfaces as classified as EIF. The CP approach
also specifies how a complexity level (Low, Average, High)
should be assigned to each interface, based on the number of
operations and number of operation’s parameters it presents.
Hence, IFCc is defined as:

IFCc =

2∑
j=1

3∑
k=1

Ijk ×Wjk

Ijk is the number of interfaces of type j (1=ILF and 2=EIF)
with complexity level k (1=Low, 2=Average, and 3=High).
Wjk is the weight, given by the CP approach, for the interface
type j with complexity level k.

ITCc is evaluated in terms of the Interaction Frequency
(IFij) of the j-th operation of the i-th interface and the
Complexity Measure (CMijk) of the k-th data type involved
in the execution of the j-th operation of the i-th interface.

TABLE II. TESTS DEFINED FOR THE EXPERIMENT.

#Test Object Treatment Subjects

1 Web Server Style-Based Approach Group 1
2 MapReduce Architecture Search-Based Approach Group 2
3 MapReduce Architecture Style-Based Approach Group 1
4 Web Server Search-Based Approach Group 2
5 Questionnaire Style-Based Approach Group 1
6 Questionnaire Search-Based Approach Group 2

7 MapReduce Architecture Search-Based Approach Group 1
8 Web Server Style-Based Approach Group 2
9 Web Server Search-Based Approach Group 1

10 MapReduce Architecture Style-Based Approach Group 2
11 Questionnaire Search-Based Approach Group 1
12 Questionnaire Style-Based Approach Group 2

IFij is defined as a ratio of the number of interactions (NO)
performed by the operation and the number of interactions
(NI) performed by all operations of the interface. CMijk, in
its turn, is defined as:

CMijk(D,L) = L+

m∑
n=1

CM(DTn, L+ 1)

D is the data type under measurement, L is the number of the
level where the data type D occurs in the component data type
graph (initially 1), DTn is the data type of the n-th D’s data
member and m is the number of data members in D. Finally,
ITCc can be defined as:

ITCc =

p∑
i=1

q∑
j=1

(
IFij ×

r∑
k=1

CMijk

)
p is the number of interfaces provided by component c, q is
the number of operations that the i-th interface provides, and
r is the number of data types involved in the execution of
the j-th operation of the i-th interface. The overall architecture
complexity AC is defined as the sum of the CCi’s of every
component i comprising the solution.

3) Measuring the Acquisition of Distilled Design Knowl-
edge (Post-Experiment Questionnaire): the third dependent
variable we investigated herein is the method’s potential for
leveraging the acquisition of distilled design knowledge. For
that purpose, we prepared a questionnaire with 10 multiple
choice questions related to refined knowledge about quality at-
tribute trade-offs in the SA systems domain. Students answered
such questionnaire at the end of each experiment day and we
assigned grades according to the number of correctly answered
questions. The goal was to evaluate to which extent the adopted
design approach may leverage the acquisition of distilled
knowledge about such design trade-offs. The questionnaire is
available at the experiment website.

C. Hypotheses Formulation

In the quasi-experiment we report herein, we compare the
use of a search-based architecture design approach and a style-
based design approach with respect to the effectiveness and
complexity of resulting architectures, as well as to the method’s
potential to promote the acquisition of distilled design knowl-
edge. Such goal has been stated in three null hypotheses (H0)
and their corresponding alternative hypotheses (H1):

• H1
0 : there is no difference in design effectiveness

(measured in terms of the Generational Distance GD)

between a feedback control loop design created using
the style-based approach (reference approach: RA)
and a feedback control loop design created using the
search-based approach (intervention approach: IA).

H1
0 : µGDRA

= µGDIA

H1
1 : µGDRA

> µGDIA

• H2
0 : there is no difference in design complexity (mea-

sured in terms of the Architectural Complexity AC)
between a feedback control loop design created using
the style-based approach and a feedback control loop
design created using the search-based approach.

H2
0 : µACRA

= µACIA

H2
1 : µACRA

> µACIA

• H3
0 : there is no difference in the acquisition of dis-

tilled design knowledge (measured in terms of applied
questionnaire’s grade QG) between designing a feed-
back control loop using the style-based approach and
designing a feedback control loop using the search-
based approach.

H3
0 : µQGRA

= µQGIA

H3
1 : µQGRA

< µQGIA

D. Experiment Design

The experiment was undertaken as a blocked subject-object
study, which means that each subject exercises both treatments
and effects can be compared in pairs. Since the experiment
students had a stronger technical background in two different
fields (14 devoted to software development and 10 devoted
to network administration), we used such an information as
a blocking factor. By doing that, we eliminate the undesired
effect of student’s technical background on the dependent
variables, increasing the precision of the experiment.

Students from each technical background partition were
randomly and equally assigned to experiment groups 1 and
2, yielding a similar proportion of developers and network
administrators in each group. As presented in Table II, a total
of eight design tests and four questionnaire answering tests
were conducted in the experiment. Each group experienced
every combination of an object (WS model, MR model, or
the questionnaire) and a treatment (style-based approach or
search-based approach). In the first experiment day, group 1
applied the style-based approach, initially in the WS model
and then in the MR model, while group 2 adopted the search-
based approach with the opposite object’s order. At the end
of the day, both groups answered the questionnaire based
on their experience with the corresponding approach. In the
second experiment day, groups exchanged the treatments and
experienced the objects in the opposite order to the one
conducted by them in the previous day. The same questionnaire
was applied again at the end of the second day.

To minimize the effect of subjects gaining information
from previous assignments, we systematically balanced which
object-treatment combination is first experienced in each
group. The tests’ operation order is presented in Table I. To
reduce hypotheses guessing and other social threats, students
did not receive any feedback and were not aware of the
experiment until its completion.

TABLE III. DESCRIPTIVE STATISTICS FOR THE EXPERIMENT’S
DEPENDENT VARIABLES.

Generational Distance (GD)

mean(µ) median std. dev.

Search-Based Approach (IA) 2.40 2.45 1.08
Style-Based Approach (RA) 2.59 2.41 1.03
Difference (IA−RA) -0.19 -0.62 1.32

Architecture Complexity (AC)

mean(µ) median std. dev.

Search-Based Approach (IA) 6.46 6.65 2.77
Style-Based Approach (RA) 7.02 7.05 2.70
Difference (IA−RA) -0.57 -1.90 3.47

Questionnaire Grade (QG)

mean(µ) median std. dev.

Search-Based Approach (IA) 6.85 7.00 1.43
Style-Based Approach (RA) 7.04 7.25 1.27
Difference (IA−RA) -0.19 -0.50 1.51

IV. ANALYSIS OF THE RESULTS AND DISCUSSION

After the experiment operation, 20 subjects provided usable
data for paired comparison of Generational Distance and
Architecture Complexity. Questionnaire answers were then
restrict to those provided by such 20 subjects. With the support
of DuSE-MT, all UML models resulting from the design tests
were serialized in XML files, along with their corresponding
quality attributes values (objective-space location). Such val-
ues were used to compute the Generational Distance for all
resulting models. The Architecture Complexity value was also
calculated for each resulting UML model.

A. Analysis

Figure 4 and Table III summarize the measured values
of all dependent variables, as well as their paired difference
with respect to the adopted treatment. The first step we
undertook in the analysis stage was to investigate whether the
usual assumptions for the use of parametric tests – preferable
because of their enhanced power – hold in the collected data.
Such assumptions are: i) data is taken from an interval or
ratio scale (held for all experiment’s dependent variables); ii)
observations are independent (enforced by experiment design);
iii) measured values are normally distributed in the popula-
tions; and iv) population variances are equal between groups
(homoscedasticity).

We used the Anderson-Darling test [23] to evaluate to
which extent the paired differences are normally distributed.
The Brown–Forsythe test [24] was applied to investigate the
null hypothesis of homoscedasticity between the intervention
approach and reference approach groups. Table IV presents
such a results. With a significance level (α) of 0.05, we
observed that only the Questionnaire Grade (QG) paired dif-

TABLE IV. RESULTS OF ANDERSON-DARLING NORMALITY TEST
AND BROWN–FORSYTHE HETEROSCEDASTICITY TEST (α = 0.05).

Dependent Variable Anderson-Darling
p-value

Brown–Forsythe
p-value

Generational Distance 1.29814505086953E-007 0.9009324909
Architecture Complexity 2.88672812219819E-010 0.7207666486
Questionnaire Grade 0.635529605 0.7167840476

ference could be considered normally distributed (Anderson-
Darling p-value > 0.05). In addition, for all dependent vari-
ables, the null hypothesis of homoscedasticity could not be re-
jected (Brown-Forsythe p-value > 0.05). Since all assumptions
must hold, only hypothesis H3

0 was evaluated by a parametric
test. The paired differences of Generational Distance (GD) and
Architecture Complexity (AC) were not considered normally
distributed (p-value < α = 0.05) and, as such, hypotheses H1

0
and H2

0 were evaluated by using a non-parametric test.

As presented in Table V, we used the Wilcoxon Signed-
Rank test [15], [25] to investigate H1

0 and H2
0 and the Paired

t-test [15] to investigate H3
0 . With a significance level (α) of

0.05, H1
0 and H2

0 were rejected while no evidence could be
found about H3

0 .

B. Discussion

The descriptive statistics and results of hypotheses tests
show that there are improvements in the dependent variables,
except for the Questionnaire Grade (QG). Actually, students
who first exercised the search-based approach got slightly
smaller grades (6.85) than other ones (7.04). Since both the
architecture style catalog and the design space used in the
experiment contain the same information, two possible reasons
for such difference remain. First, students exposed to the
search-based approach may had experienced a larger set of
candidate architectures, which would contribute to obfuscate
some quality trade-offs evaluated in the questionnaire. Second,
the quality trade-offs may actually be not too difficult to grasp
without the use of structured design spaces and automated
architecture optimization, so that the difference is actually by
chance. Further experiments are needed to better investigate
such an aspect.

Generational Distance (adopted measure for effectiveness)
is, on average, 7% lower with the search-based approach
(2.40) when compared to the style-based approach (2.59).
Architecture Complexity is, on average, 7% lower with the
search-based approach (6.46) when compared to the style-
based approach (7.02). While such values already indicate
some improvements in the resulting architectures, we still lack
further investigation about the boundaries that such enhance-
ments may present.

V. THREATS TO VALIDITY

This section presents the threats to validity [15] we iden-
tified for the experiment reported in this paper.

A. Threats to Construct Validity

Construct Validity is the degree to which the objects and
measurements reflect their associated constructs in the real
world. We have identified three such threats: inadequate pre-
operational explication of constructs, hypothesis guessing, and
objects representativeness.

TABLE V. RESULTS OF STATISTICAL TESTS (α = 0.05).

Hi
0 Test Criteria Conclusion

1 Wilcoxon Signed-Rank T(410) > T-critical(378) Rejected
2 Wilcoxon Signed-Rank T(367) > T-critical(361) Rejected
3 Paired t-test p-value=0.5488018266 Not Rejected

IA RA

0

2

4

6

Treatment

G
en

er
at

io
na

l
D

is
ta

nc
e

(G
D

)

Paired Difference
(IA−RA)

−2

0

(a)

IA RA

0

10

Treatment

A
rc

hi
te

ct
ur

al
C

om
pl

ex
ity

(A
C

)

Paired Difference
(IA−RA)

−5

0

(b)

IA RA

2

4

6

8

10

Treatment

Q
ue

st
io

nn
ai

re
G

ra
de

(Q
G

)

Paired Difference
(IA−RA)

−4

−2

0

2

(c)

Fig. 4. Box and whiskers plots for design effectiveness (a), design complexity (b), and method’s potential for leveraging the acquisition of distilled knowledge
(c). For each dependent variable its shown the values for the search-based approach (IA: intervention approach), the style-based approach (RA: reference
approach), as well as the values of the paired difference (IA−RA).

First, since the theory behind feedback control loops en-
compasses areas such as systems and signals, modeling of
dynamic behavior, and analysis in frequency domain, students
may have had no enough time to get a firm grasp about such
mathematical background. To reduce this threat, we focused
on requiring minimum knowledge about such as aspect and
tried to leverage tool support regarding this issue in DuSE-
MT. Second, students may have tried to perform better when
using the search-based approach because it is the treatment
proposed by the course holders. To mitigate this issue, students
were not aware of the experiment and were graded on all tests.
Third, the objects used in the experiment may not actually
reflect the kind of problems routinely faced in the SA systems
domain. Since the two adopted self-adaptation scenarios have
been repeatedly investigated in a number of recent papers, we
believe they constitute interesting and representative examples
of current practice.

B. Threats to Internal Validity

Internal Validity concerns in analyzing to which extent un-
known factors may affect the dependent variables with respect
to causality. We have identified two such threats. The first
one is maturation, where subject gain insights from previous
experiment sessions. To reduce this threat, we alternately
assigned such objects during the two experiment days. The
second is related to instrumentation. Since a new modeling
tool was adopted in the experiment (DuSE-MT), that may have
impacted in some extent the student’s abilities for developing
the required models.

C. Threats to External Validity

External Validity is related to the ability of generalizing the
experiment results to other settings. Since we used students of
a graduate program in Distributed and Ubiquitous Computing,
they may not represent the expected background in current
industry practice.

D. Threats to Conclusion Validity

Conclusion Validity is related to the ability of generalizing
the results to the overall concept or theory which supports the
experiment. Since the experiment objects were created by us,
there is a potential threat that such objects do not actually

represent the problem under investigation. Such threat could
have been reduced by relying on external SA systems experts
to design such objects.

VI. RELATED WORK

To the best of our knowledge, no controlled experiments
regarding the use of search-based approaches when designing
SA systems has been undertaken so far. However, we identified
one experiment regarding SA systems design and a number
of papers reporting on controlled experiments about software
architecture design.

In [26], the authors report the results of a quasi-experiment
that investigates whether the use of external feedback loops
(when compared with internal adaptation mechanisms) im-
proves the design of SA systems. The design was evaluated
with respect to design complexity (in terms of activity com-
plexity and control flow complexity), fault density, and design
productivity. The experiment shows that external feedback
loops reduce the number of adopted control flow primitives,
increasing the design’s understandability and maintainability.
They also observed improvements in design productivity when
using external feedback loops, but found no significant effects
on design complexity in terms of activity complexity. The
experiment we present herein tackles a similar design issue
but with different treatments, objects, measurements, and hy-
potheses. While their experiment reveals evidence about the
decoupling and reusability benefits of external feedback loops,
we believe our experiment contributes by revealing the poten-
tial benefits of systematic design knowledge representation and
search-based automated design approaches in such a domain.

A controlled experiment aimed at evaluating the impact
of design rationale documentation techniques on effectiveness
and efficiency of decision-making in the presence of require-
ments changing is presented in [27]. The results show that the
use of such documentation technique significantly improves
effectiveness but with no impacts on efficiency. In [28], the
authors present a controlled experiment which evaluates the
impact of the use of design rationale documentation on soft-
ware evolution. They conclude that there are improvements
in correctness and productivity when such documentation is
available. Our search-based design approach under evaluation

herein supports rationale documentation in terms of domain-
specific design spaces. The experiment we report in this paper
is ultimately assessing the impact of having such rationale
documented in a structured and systematic way, in contrast
to ad-hoc styles catalogs or unstructured rationale documents.

In [29], a controlled experiment was performed to eval-
uate the usefulness of architectural patterns when evolving
architectures to support specific usability concerns. The au-
thors conclude that usability concerns are amenable to be
handled in architectural level and that architectural patterns
can significantly leverage such an aspect. In the SA systems
domain, architecture-centric approaches with explicit (first-
class) representation of feedback loops have been advocated
as a promising research direction [19], [30], [31], due to their
generality and support for early reasoning of self-adaptation
quality attributes. The experiment we describe in this paper
evaluates how search-based design approaches impact such
first-class representation of feedback loops.

A controlled experiment on the impact of the use of design
patterns on the productivity and correctness of software evo-
lution activities in described in [32]. They conclude that each
design pattern presents a specific impact on such dependent
variables and, therefore, claim that design patterns should not
be characterized as useful or harmful in general. In contrast,
our experiment compares the use of two distinct representa-
tions of such distilled design knowledge: architectural styles
vs. structured design spaces. Furthermore, we are interested in
evaluating whether search-based design automation improves
the effectiveness of SA systems.

With respect to software engineering mechanisms for SA
systems, in [33] Weyns et al. present FORMS: an unifying
reference model for formal specification of distributed SA
systems. Their approach provides a small number of modeling
elements capturing key design concerns in the SA systems
domain. In contrast to our approach, FORMS provides no
means for automated design of feedback loops and a steep
learning curve may be experienced because of its rigorous
formal underpinnings.

Vogel & Giese, in [34], propose a new modeling lan-
guage for explicitly describing feedback control loops as
runtime megamodels (multiple models@runtime). In contrast,
our approach builds on top of widely accepted standards
for modeling languages, like MOF and UML. Although our
approach has been used as an off-line design mechanism,
future work include moving such infrastructure to runtime,
providing a models@runtime approach for Dynamic Adaptive
Search-Based Software Engineering [35].

A UML profile for modeling feedback control loops as
first-class entities is presented in [30]. In our mechanism,
we go a step further towards the use of UML profiles as
the underlying mechanism for identifying loci of architectural
decisions, enabling automated design, and detecting invalid
candidate architectures.

In [36], Cheng et al. present an adaptation language which
relies on utility theory for handling self-adaptation in the
presence of multiple objectives. A priori preference articulation
methods – like utility functions – convert a multi-objective
optimization problem into a single-objective one, but its effec-
tiveness highly depends on an well-chosen preference vector.

Our approach, on the other hand, accommodates the multi-
objective nature of SA systems design as an essential aspect
by using a posteriori preference articulation.

An on-line learning-based approach for handling unantic-
ipated changes at runtime is presented in [37]. Whilst we
have considered in this work only feedback control as the
enabling mechanism for self-adaptation, other strategies may
be modeled as new variation points.

In [38], Křikava et al. propose a models@runtime approach
which represents adaptation logic as networks of messaging
passing actors. Our work, in contrast, leverages design reuse
by requiring the use of highly distilled design knowledge only
once – when designing a domain-specific DuSE design space.
Thereafter, novice architects have better support for designing
effective architectures and getting insights from the search
activities.

VII. CONCLUSIONS

This paper presented a quasi-experiment aimed at eval-
uating whether search-based architecture design approaches
improve the effectiveness and complexity of SA systems when
compared to style-based design approaches. To the best of our
knowledge, that is the first endeavor in evaluating how search-
based automated design impacts the quality of SA systems.
The results reveal that the use of systematically structured de-
sign spaces and architecture optimization mechanisms indeed
provide enhanced support to the evaluation of quality trade-
offs, for the experiment objects considered herein.

Some insights have been identified from the experiment
results. We found no evidence that search-based approaches
leverage the acquisition of distilled design knowledge in the
SA systems domain. Alternative instruments for evaluating
such an aspect may be adopted in future research, enabling
the eliciting of more elucidative conclusions. However, search-
based design approaches do contribute in revealing architec-
tures which indeed exhibit a near-optimal trade-off between
quality attributes. In contrast, architects using the style-based
approach are more likely to design sub-optimal architectures.
Improved effectiveness results in managing elements with
lower overhead and enhanced use of resources, leveraging the
overall SA behavior. Moreover, designs with lower complexity
were also obtained when using the search-based approach,
fostered by the systematic representation of the architecture
changes required to realize the involved feedback loops. As a
consequence, one should expect positive effects in understand-
ability, maintainability, and testability of development artifacts
realizing such architectures.

A lot of current research are driving their efforts towards
the establishment of principled and well-founded underpin-
nings for engineering software-intensive systems, specially in
particular application domains like SA systems. The organiza-
tion of software design knowledge for routine use is mandatory
if we are to realize the upcoming generation of software-
intensive systems.

REFERENCES

[1] T. Patikirikorala, A. Colman, J. Han, and L. Wang, “A systematic
survey on the design of self-adaptive software systems using control
engineering approaches,” in Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), june 2012, pp. 33 –42.

[2] M. Salehie and L. Tahvildari, “Self-adaptive software: landscape and
research challenges,” ACM Transactions on Autonomous and Adaptive
Systems (TAAS), vol. 4, no. 2, pp. 14:1–14:42, May 2009.

[3] M. C. Huebscher and J. A. McCann, “A survey of autonomic computing
- degrees, models, and applications,” ACM Computing Surveys (CSUR),
vol. 40, no. 3, pp. 7:1–7:28, Aug. 2008.

[4] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[5] R. de Lemos et al, “Software Engineering for Self-Adaptive Systems: A
second Research Roadmap,” in Software Engineering for Self-Adaptive
Systems, ser. Dagstuhl Seminar Proceedings, R. de Lemos, H. Giese,
H. Müller, and M. Shaw, Eds., no. 10431. Dagstuhl, Germany.: Schloss
Dagstuhl. Leibniz-Zentrum fuer Informatik, Germany. Full citation:
http://dx.doi.org/10.1007/978-3-642-02161-9_1, 2011.

[6] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Comput.
Surv., vol. 45, no. 1, pp. 11:1–11:61, Dec. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2379776.2379787

[7] M. Harman, “Why the virtual nature of software makes it ideal for
search based optimization,” in FASE, ser. Lecture Notes in Computer
Science, D. S. Rosenblum and G. Taentzer, Eds., vol. 6013. Springer,
2010, pp. 1–12.

[8] O. RäIhä, “Survey: A survey on search-based software design,” Com-
puter Science Reviews, vol. 4, no. 4, pp. 203–249, Nov. 2010.

[9] S. S. Andrade and R. J. d. A. Macêdo, “Searching for effective
feedback control architectures for distributed self-adaptive systems,”
Technical Report, Apr. 2014. [Online]. Available: http://dusearchitects.
wordpress.com/publications/

[10] S. S. Andrade and R. J. d. A. Macêdo, “A search-based approach
for architectural design of feedback control concerns in self-adaptive
systems,” in Proceedings of the 7th IEEE Intl Conf. on Self-Adaptive
and Self-Organizing Systems. Philadelphia, PA, USA: IEEE, 2013.

[11] S. S. Andrade and R. J. d. A. Macêdo, “Architectural design spaces for
feedback control concerns in self-adaptive systems,” in Proceedings of
the 25th Intl Conf. on Software Engineering and Knowledge Engineer-
ing. New York, USA: ACM, 2013.

[12] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1327452.1327492

[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002.

[14] K. Deb and D. Kalyanmoy, Multi-Objective Optimization Using Evolu-
tionary Algorithms. New York, NY, USA: John Wiley & Sons, Inc.,
2001.

[15] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and B. Regnell,
Experimentation in Software Engineering. Springer, 2012.

[16] D. A. Van Veldhuizen and G. B. Lamont, “On measuring multiobjective
evolutionary algorithm performance,” in Evolutionary Computation,
2000. Proceedings of the 2000 Congress on, vol. 1. IEEE, 2000,
pp. 204–211.

[17] T. Wijayasiriwardhane and R. Lai, “Component Point: A system-level
size measure for component-based software systems,” J. Syst. Softw.,
vol. 83, no. 12, pp. 2456–2470, Dec. 2010.

[18] J. Andersson, R. Lemos, S. Malek, and D. Weyns, “Software engi-
neering for self-adaptive systems,” in Software Engineering for Self-
Adaptive Systems, B. H. Cheng, R. Lemos, H. Giese, P. Inverardi,
and J. Magee, Eds. Berlin, Heidelberg: Springer-Verlag, 2009, ch.
Modeling Dimensions of Self-Adaptive Software Systems, pp. 27–47.

[19] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle,
M. Litoiu, H. Müller, M. Pezzè, and M. Shaw, “Software engineering
for self-adaptive systems,” in Software Engineering for Self-Adaptive
Systems, B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, and J. Magee,
Eds. Berlin, Heidelberg: Springer-Verlag, 2009, ch. Engineering
Self-Adaptive Systems through Feedback Loops, pp. 48–70. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-02161-9_3

[20] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback
Control of Computing Systems. John Wiley & Sons, 2004.

[21] (2014) Apache Hadoop - The Apache Software Foundation. [Online].
Available: http://hadoop.apache.org

[22] D. Jiang, B. C. Ooi, L. Shi, and S. Wu, “The performance of MapRe-
duce: An in-depth study,” Proceedings of the VLDB Endowment, vol. 3,
no. 1-2, pp. 472–483, 2010.

[23] G. Corder and D. Foreman, Nonparametric Statistics for Non-
Statisticians: A Step-by-Step Approach. Wiley, 2009. [Online].
Available: http://books.google.com.br/books?id=-ufOfzVp6qYC

[24] P. I. Good, Permutation, parametric and bootstrap tests of hypotheses.
Springer, 2005, vol. 3.

[25] J. D. Gibbons and S. Chakraborti, Nonparametric Statistical Inference,
Fourth Edition: Revised and Expanded, ser. Statistics: A Series
of Textbooks and Monographs. Taylor & Francis, 2003. [Online].
Available: http://books.google.com.br/books?id=kJbVO2G6VicC

[26] D. Weyns, M. U. Iftikhar, and J. Söderlund, “Do external feedback
loops improve the design of self-adaptive systems ? a controlled
experiment,” in Proceedings of the 8th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems. IEEE
Press, 2013, pp. 3–12.

[27] D. Falessi, G. Cantone, and M. Becker, “Documenting design decision
rationale to improve individual and team design decision making:
an experimental evaluation,” in Proceedings of the 2006 ACM/IEEE
international symposium on Empirical software engineering. ACM,
2006, pp. 134–143.

[28] L. Bratthall, E. Johansson, and B. Regnell, “Is a design rationale
vital when predicting change impact ? a controlled experiment on
software architecture evolution,” in Product Focused Software Process
Improvement. Springer, 2000, pp. 126–139.

[29] E. Golden, B. E. John, and L. Bass, “The value of a usability-supporting
architectural pattern in software architecture design: a controlled exper-
iment,” in Proceedings of the 27th international conference on Software
engineering. ACM, 2005, pp. 460–469.

[30] R. Hebig, H. Giese, and B. Becker, “Making control loops explicit
when architecting self-adaptive systems,” in Proceedings of the 2nd
International Workshop on Self-Organizing Architectures, ser. SOAR
’10. New York, NY, USA: ACM, 2010, pp. 21–28. [Online].
Available: http://doi.acm.org/10.1145/1809036.1809042

[31] H. Müller, M. Pezzè, and M. Shaw, “Visibility of control in
adaptive systems,” in Proceedings of the 2nd international workshop
on Ultra-large-scale software-intensive systems, ser. ULSSIS ’08.
New York, NY, USA: ACM, 2008, pp. 23–26. [Online]. Available:
http://doi.acm.org/10.1145/1370700.1370707

[32] M. Vokáč, W. Tichy, D. I. Sjøberg, E. Arisholm, and M. Aldrin,
“A controlled experiment comparing the maintainability of programs
designed with and without design patterns – a replication in a real
programming environment,” Empirical Software Engineering, vol. 9,
no. 3, pp. 149–195, 2004.

[33] D. Weyns, S. Malek, and J. Andersson, “FORMS: Unifying reference
model for formal specification of distributed self-adaptive systems,”
ACM Transactions on Autonomous and Adaptive Systems (TAAS), vol. 7,
no. 1, p. 8, 2012.

[34] T. Vogel and H. Giese, “A language for feedback loops in self-adaptive
systems,” in Proc. of the 7th Intl Symposium on Software Engineering
for Adaptive and Self-Managing Systems. IEEE Computer Society, 6
2012, pp. 129–138.

[35] M. Harman, E. K. Burke, J. A. Clark, and X. Yao, “Dynamic adaptive
search based software engineering,” in ESEM, P. Runeson, M. Höst,
E. Mendes, A. A. Andrews, and R. Harrison, Eds. ACM, 2012, pp.
1–8.

[36] S.-W. Cheng, D. Garlan, and B. Schmerl, “Architecture-based self-
adaptation in the presence of multiple objectives,” in Proceedings of the
2006 International Workshop on Self-Adaptation and Self-Managing
Systems, ser. SEAMS ’06. New York, NY, USA: ACM, 2006, pp.
2–8. [Online]. Available: http://doi.acm.org/10.1145/1137677.1137679

[37] N. Esfahani, A. Elkhodary, and S. Malek, “A learning-based framework
for engineering feature-oriented self-adaptive software systems,” IEEE
Transactions on Software Engineering, vol. 39, no. 11, pp. 1467–1493,
2013.

[38] F. Křikava, P. Collet, and R. B. France, “Actor-based runtime
model of adaptable feedback control loops,” in Proceedings of
the 7th Workshop on Models@run.time, ser. MRT ’12. New
York, NY, USA: ACM, 2012, pp. 39–44. [Online]. Available:
http://doi.acm.org/10.1145/2422518.2422525

http://doi.acm.org/10.1145/2379776.2379787
http://dusearchitects.wordpress.com/publications/
http://dusearchitects.wordpress.com/publications/
http://doi.acm.org/10.1145/1327452.1327492
http://dx.doi.org/10.1007/978-3-642-02161-9_3
http://hadoop.apache.org
http://books.google.com.br/books?id=-ufOfzVp6qYC
http://books.google.com.br/books?id=kJbVO2G6VicC
http://doi.acm.org/10.1145/1809036.1809042
http://doi.acm.org/10.1145/1370700.1370707
http://doi.acm.org/10.1145/1137677.1137679
http://doi.acm.org/10.1145/2422518.2422525

	Introduction
	Experiment Definition
	Experiment Planning
	Design Objects
	Variables Selection
	Measuring Effectiveness (Generational Distance)
	Measuring Complexity (Component Point)
	Measuring the Acquisition of Distilled Design Knowledge (Post-Experiment Questionnaire)

	Hypotheses Formulation
	Experiment Design

	Analysis of the Results and Discussion
	Analysis
	Discussion

	Threats to Validity
	Threats to Construct Validity
	Threats to Internal Validity
	Threats to External Validity
	Threats to Conclusion Validity

	Related Work
	Conclusions
	References

